Skip to main content
Log in

Peculiarities and paradoxes of photoinduced electron transfer reactions

  • Review
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Many chemical reactions involve the electron transfer stage. The kinetics of photoinduced electron transfer reactions is commonly considered in terms of either the transition state theory as preliminary thermally activated reorganization of the medium and reactants (necessary for degeneracy of the electronic levels of the reactants and the products) or nonradiative quantum transitions, which do not require preliminary activation and are observed in the exoergic region. A new approach to the kinetics of such reactions that has been proposed recently considers a substantial reduction of the barrier in the contact reactant pair due to strong electronic interaction and takes into account the intermediate formation of a charge transfer complex. This approach has explained many well-known important features of electron transfer reactions that are inconsistent with the first two theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marcus, R.A., J. Chem. Phys., 1956, vol. 24, p. 966.

    Article  CAS  Google Scholar 

  2. Marcus, R.A., Pure Appl. Chem., 1997, vol. 69, p. 13.

    Article  CAS  Google Scholar 

  3. Marcus, R.A. and Sutin, N., Biochem. Biophys. Acta, 1985, vol. 811, p. 265.

    CAS  Google Scholar 

  4. Bolton, R. and Archer, M.D., in Advances in Chemistry Series, vol. 228: Electron Transfer in Inorganic, Organic and Biological Systems, Bolton, J.R., Mataga, N., and McLendon, G., Eds., 1991, p. 7.

  5. Levich, V.G. and Dogonadze, R.R., Dokl. Akad. Nauk SSSR, 1959, vol. 124, p. 123.

    CAS  Google Scholar 

  6. Hopfield, J.J., Proc. Nat. Acad. Sci. USA, 1974, vol. 71, p. 3640.

    Article  CAS  Google Scholar 

  7. Kestner, N.R., Logan, J., and Jortner, J., J. Phys. Chem., vol. 78, p. 2148.

  8. Miller, J.R., in Advances in Chemistry Series, vol. 228: Electron Transfer in Inorganic, Organic and Biological Systems, Bolton, J.R., Mataga, N., and McLendon G., Eds., 1991, p. 265.

  9. Kuzmin, M.G., Pure Appl. Chem., 1993, vol. 65, p. 1653.

    Article  CAS  Google Scholar 

  10. Kuzmin, M.G., J. Photochem. Photobiol. A: Chemistry, 1996, vol. 102, p. 51.

    Article  CAS  Google Scholar 

  11. Grosso, V.N., Chesta, C.A., and Previtali, C.M., J. Photochem. Photobiol. A: Chemistry, 1998, vol. 118, p. 157.

    Article  CAS  Google Scholar 

  12. Jacques, P., Allonas, X., von Raumer, M., Suppan, P., and Haselbach, E., J. Photochem. Photobiol. A: Chemistry, 1996, vol. 121, p. 41.

    Google Scholar 

  13. Hubig, S.M. and Kochi, J.K., J. Am. Chem. Soc., 1999, vol. 121, p. 1688.

    Article  CAS  Google Scholar 

  14. Kuzmin, M., Soboleva, I., Dolotova, E., and Dogadkin, D., Photochem. Photobiol. Sci., 2003, vol. 2, p. 967.

    Article  CAS  Google Scholar 

  15. Kuzmin, M.G., Soboleva, I.I., and Dolotova, E.V., Khim. Vys. Energ., 2006, vol. 40, p. 276 [High Energy Chem., 2006, vol. 40, p. 234].

    Google Scholar 

  16. Murata, S. and Tachiya, M., J. Phys. Chem., 2007, vol. A 111, p. 9240.

    Google Scholar 

  17. Knibbe, H., Rehm, D., and Weller, A., Z. Phys. Chem., N.F, 1967, vol. 56, p. 95.

    CAS  Google Scholar 

  18. Beens, H., Knibbe, H., and Weller, A., J. Chem. Phys., 1967, vol. 47, p. 1183.

    Article  CAS  Google Scholar 

  19. Mataga, N., Okada, T., and Yamamoto, N., Chem. Phys. Lett., 1967, vol. 1, p. 119.

    Article  CAS  Google Scholar 

  20. Kuzmin, M.G. and Guseva, L.N., Chem. Phys. Lett., 1969, vol. 3, p. 71.

    Article  CAS  Google Scholar 

  21. The Exciplex, Gordon, M. and Ware, W.R., Eds., New York: Academic Press, 1975.

    Google Scholar 

  22. Barzykin, A.V., Frantsuzov, P.A., Seki, K., and Tachiya, M., Adv. Chem. Phys., 2002, vol. 123, p. 511.

    Article  CAS  Google Scholar 

  23. Burshtein, A.I., Adv. Chem. Phys., 2004, vol. 129, p. 105.

    Article  CAS  Google Scholar 

  24. Kuzmin, M.G., Zh. Fiz. Khim., 1999, vol. 73, p. 1809.

    CAS  Google Scholar 

  25. Soboleva, I.V., Dolotova, E.V., and Kuzmin, M.G., Khim. Vys. Energ., 2002, vol. 36, p. 34 [High Energy Chem., 2002, vol. 36, p. 31].

    Google Scholar 

  26. Gould, I.R., Noukakis, D., Gomez-Jahn, L., Young, R.H., Goodman, J.L., and Farid, S., Chemical Physics, 1993, vol. 176, p. 439.

    Article  CAS  Google Scholar 

  27. Wynne, K., Galli, C., and Hochstrasser, R.M., J. Chem. Phys., 1994, vol. 100, p. 4797.

    Article  CAS  Google Scholar 

  28. Nicolet, O., Banerji, N., Page’s, S., and Vauthey, E., J. Phys. Chem. A, 2005, vol. 109, p. 8236.

    Article  CAS  Google Scholar 

  29. Kuzmin, M.G. and Guseva, L.N., Dokl. Akad. Nauk SSSR, 1971, vol. 200, p. 375.

    CAS  Google Scholar 

  30. Wang, Y., Haze, O., Dinnocenzo, J.P., Farid, S., Farid, R.S., and Gould, I.R., J. Org. Chem., 2007, vol. 72, p. 6970.

    Article  CAS  Google Scholar 

  31. Arnold, B.R., Noukakis, D., Farid, S., Goodman, J.L., and Gould, I.R., J. Am. Chem. Soc., 1995, vol. 117, p. 4399.

    Article  CAS  Google Scholar 

  32. Wynne, K., Reid, G.D., and Hochstrasser, R.M., J. Chem. Phys., 1996, vol. 105, p. 2287.

    Article  CAS  Google Scholar 

  33. Kuzmin, M.G., Soboleva, I.V., and Dolotova, E.V., J. Phys. Chem. A, 2007, vol. 111, p. 206.

    Article  CAS  Google Scholar 

  34. Feskov, S.V., Ionkin, V.N., Ivanov, A.I., Hagemann, H., and Vauthey, E., J. Phys. Chem. A, 2008, vol. 112, p. 594.

    Article  CAS  Google Scholar 

  35. Nikitin, E.E., in Fast Reactions and Primary Processes in Chemical Kinetics, in Proceedings of Fifth Nobel Symposium, Claesson, S., Ed., New York: Inersci, 1967, p. 165.

    Google Scholar 

  36. Robb, M.A., Bernardi, F., and Olivucci, M., Pure Appl. Chem., 1995, vol. 67, p. 783.

    Article  CAS  Google Scholar 

  37. Zgierski, M.Z., Fujiwara, T., and Lim, E.C., Chem. Phys. Lett., 2008, vol. 463, p. 289.

    Article  CAS  Google Scholar 

  38. Wynne, K., Galli, C., and Hochstrasser, R.M., J. Chem. Phys., 1994, vol. 100, p. 4797.

    Article  CAS  Google Scholar 

  39. Dolotova, E.V., Soboleva, I.V., and Kuzmin, M.G., Khim. Vys. Energ., 2002, vol. 36, p. 125 [High Energy Chem., 2002, vol. 36, p. 98].

    Google Scholar 

  40. Dogadkin, D.N., Soboleva, I.V., and Kuzmin, M.G., Khim. Vys. Energ., 2004, vol. 38, p. 135 [High Energy Chem., 2004, vol. 38, p. 108].

    Google Scholar 

  41. Gould, I.R., Young, R.H., Mueller, L.J., Albrecht, A.C., and Farid, S., J. Am. Chem. Soc., 1994, vol. 116, p. 8188.

    Article  CAS  Google Scholar 

  42. Kuzmin, M.G. and Sadovskii, N.A., Khim. Vys. Energ., 1975, vol. 9, p. 291.

    CAS  Google Scholar 

  43. Dogadkin, D.N., Soboleva, I.V., and Kuzmin, M.G., Khim. Vys. Energ., 2001, vol. 35, p. 281 [High Energy Chem., 2001, vol. 35, p. 251].

    Google Scholar 

  44. Dolotova, E.V., Soboleva, I.V., and Kuzmin, M.G., Khim. Vys. Energ., 2003, vol. 37, p. 272 [High Energy Chem., 2003, vol. 37, p. 231].

    Google Scholar 

  45. Weller, A., Z. Phys. Chem., N.F, 1982, vol. 130, p. 129.

    CAS  Google Scholar 

  46. Kitamura, N., Costa, R., Kim, H.B., and Tazuke, S., J. Phys. Chem., 1987, vol. 91, p. 2033.

    Article  CAS  Google Scholar 

  47. Kuzmin, M.G., Sadovskii, N.A., Weinstein, Yu.A., and Soloveichik, O.M., Khim. Vys. Energ., 1992, vol. 26, p. 540

    Google Scholar 

  48. Weinstein, Yu.A., Sadovskii, N.A., and Kuzmin, M.G., Khim. Vys. Energ., 1994, vol. 28, p. 244 [High Energy Chem., 1994, vol. 28, no. 3, p. 211].

    Google Scholar 

  49. Gersdorf, J., Mattey, J., and Goerner, H., J. Am. Chem. Soc., 1987, vol. 109, p. 1203.

    Article  CAS  Google Scholar 

  50. Foell, R.E., Kramer, H.E.A., and Steiner, U.E., J. Phys. Chem., 1990, vol. 94, p. 2476.

    Article  CAS  Google Scholar 

  51. Jacques, P., Allonas, X., Suppan, P., and Von Raumer, M., J. Photochem. Photobiol. A: Chem., 1966, vol. 101, p. 183.

    Article  Google Scholar 

  52. Sadovskii, N.A., Goerner, H., Schaffner, K., and Kuzmin, M.G., Chem. Phys. Lett., 1998, vol. 282, p. 456.

    Article  CAS  Google Scholar 

  53. Sadovskii, N.A., Shilling, R.D., and Kuzmin, M.G., J. Photochem., 1985, vol. 31, p. 247.

    Article  CAS  Google Scholar 

  54. Dogadkin, D.N., Soboleva, I.V., and Kuzmin, M.G., Khim. Vys. Energ., 2002, vol. 36, p. 422 [High Energy Chem., 2002, vol. 36, p. 383].

    Google Scholar 

  55. Mataga, N., Taniguchi, S., Chosrowjan, H., Osuka, A., and Yoshida, N., Chem. Phys., 2003, vol. 295, p. 215.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Kuzmin.

Additional information

Original Russian Text © M.G. Kuzmin, I.V. Soboleva, E.V. Dolotova, D.N. Dogadkin, 2011, published in Khimiya Vysokikh Energii, 2011, Vol. 45, No. 5, pp. 387–398.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzmin, M.G., Soboleva, I.V., Dolotova, E.V. et al. Peculiarities and paradoxes of photoinduced electron transfer reactions. High Energy Chem 45, 353–364 (2011). https://doi.org/10.1134/S0018143911050122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143911050122

Keywords

Navigation