Skip to main content
Log in

Supramolecular complexes based on cyclodextrins

  • Review
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A summary of the application of cyclodextrins (CDs) in the field of supramolecular chemistry has been given. Unique structural features of CDs, namely the separation of hydrophilic and hydrophobic groups, cause unusual physical and chemical properties of these molecules. The most important property of natural or chemically modified CDs is the ability to reversibly and selectively bind organic, inorganic, and biological molecules, forming inclusion complexes (ICs) of the “guest-host” type or nanostructured supramolecular assemblies. The most interesting examples of the application of ICs with CDs in pharmaceutical, food, and chemical industry, spectrometric analysis, separation technologies, of the use of CDs as models for molecular recognition in biology, as well as the cyclical component in the construction of supramolecular architectures (rotaxanes, pseudorotaxanes) are given in the review. The mechanism and methods of the formation of ICs, their properties and the methods of analysis have been described. Particular attention has been paid to molecular necklaces. One of the new promising directions of the application of CDs, namely, the preparation of nanosized materials, has been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harada, A., Coord. Chem. Rev., 1996, vol. 148, p. 115.

    Article  CAS  Google Scholar 

  2. Guo, Q.-X., Luo, S.-H., and Liu, Y.-C, J. Incl. Phenom., 1998, vol. 30, p. 173.

    Article  CAS  Google Scholar 

  3. Li, S. and Perdy, W.C., Chem. Rev., 1992, vol. 92, p. 1457.

    Article  CAS  Google Scholar 

  4. Szejtli, J., Starch (Starke), 1982, vol. 34, no. 11, p. 379.

    Article  CAS  Google Scholar 

  5. Fromming, K.H. and Szejtly, J., Cyclodextrins in Pharmacy, Kluwer: Academic, 1994, p. 228.

    Google Scholar 

  6. Uekama, K., Hirayama, F., and Irie, T., Chem. Rev., 1998, vol. 5, p. 2045.

    Article  Google Scholar 

  7. Duchene, D., Vaution, C., and Glomot, F., Drug Dev. Ind. Pharm., 1986, nos. 11–13, p. 2193.

  8. Nambu, N., Kikuchi, K., Kikuchi, T., Takahashi, Y., Ueda, H., and Nagai, T., Chem. Pharm. Bull., vol. 26, no. 12 (19781225), p. 3609.

  9. Piel, G., Pirotte, B., Delneuvill, I., Neven, P., Llabres, G., Delarge, J., and Delattre, L., J. Pharm. Sci., 1996, vol. 86, no. 4, p. 475.

    Article  Google Scholar 

  10. Szentle, L. and Szejtli, J., Trends Food Sci. Technol., 2004, vol. 15, nos. 3–4, p. 137.

    Article  Google Scholar 

  11. Moldenhauer, J.-P., Regiert, M., and Winner, T., US Patent no. 5985296, 1999.

  12. Schlenk, H., Sand, D.M., and Tillotson, J.A., US Patent no. 2827452, 1958.

  13. Dodziuk, H., Cyclodextrins and Their Complexes: Chemistry, Analytical Methods, Applications, New York: Wiley, 2006.

    Book  Google Scholar 

  14. Yoshida, N., Seiyama, A., and Fujimoto, M., J. Phys. Chem., 1990, vol. 94, p. 4254.

    Article  CAS  Google Scholar 

  15. Garcia, S.F., Hernandez, L.M., and De Gracia, V.E., Mikrochim. Acta, 1987, vol. 2, p. 217.

    Google Scholar 

  16. Jiang, Z.-T., Li, R., Xi, J.-B., and Yi, B.-Q., Anal. Chim. Acta, 1999, vol. 392, nos. 2–3, p. 247.

    Article  CAS  Google Scholar 

  17. Li, R., Jiang, Z.-T., Mao, L.-Y., and Shen, H.-X., Anal. Chim. Acta, 1998, vol. 363, nos. 2–3, p. 295.

    Article  CAS  Google Scholar 

  18. Jiang, Z.-T., Li, R., and Yu, J.C., Anal. Lett., 2002, vol. 35, no. 5, p. 825.

    Article  CAS  Google Scholar 

  19. Li, R., Jiang, Z.-T., and Lin, X.-H., Anal. Lett., 1997, vol. 30, no. 9, p. 1685.

    CAS  Google Scholar 

  20. Cramer, F., Saenger, W., and Spatz, H.-Ch., J. Am. Chem. Soc., 1967, vol. 89, no. 1, p. 14.

    Article  CAS  Google Scholar 

  21. Lerner, D.A., Del Castillo, B., and Munoz-Botella, S., Anal. Chim. Acta, 1989, vol. 227, p. 297.

    Article  CAS  Google Scholar 

  22. Hashimoto, S. and Thomas, J.K., J. Am. Chem. Soc., 1985, vol. 107, p. 4655.

    Article  CAS  Google Scholar 

  23. Nazarov, V.B., Avakyan, V.G., Alfimov, M.V., and Vershinnikova, T.G., Izv. Akad. Nauk, Ser. Khim., 2003, no. 4, p. 869.

  24. Nazarov, V.B., Avakyan, V.A., and Alfimov, M.V., Ross. Nanotekhnol., 2007, vol. 2, nos. 7–8, p. 68.

    Google Scholar 

  25. Braga, S.S, Sa Ferreira, R.A., Goncalves, I.S., Ribeiro-Claro, P., Pillinger, M., Rocha J., TeixeiraDias, J.J.C., Carlos, L.D., J. Incl. Phenom., 2002, vol. 44, p. 261.

    Article  CAS  Google Scholar 

  26. Fernandes, J.A., Braga, S.S., Sa Ferreira, R.A., Pillinger, M., Carlos, L.D., Ribeiro-Claro, P., Goncalves, I.S., J. Incl. Phenom., 2006, vol. 55, p. 329.

    Article  CAS  Google Scholar 

  27. Politzer, I.R., Crago, K.T., Garner, S., Joseph, J., and Boyer, J.H., Lasers’89. Proc. Int. Conf., New Orleans, 1989, p. 434.

  28. Hinze, W.L. and Armstrong, D.W., Anal. Lett., 1980, vol. 13, no. 12, p. 1093.

    CAS  Google Scholar 

  29. Chakraborty, M., Ivanova-Mitseva, P., and Bart, H.-J., Sep. Sci. Technol., 2006, vol. 41, p. 3539.

    Article  CAS  Google Scholar 

  30. Anan’eva, I.A., Shapovalova, E.N., Lopatin, S.A., Shpigun, O.A., Varlamov, V.P., and Davankov, V.A., Vestn. Mosk. Univ., Ser. 2, Khim., 2001, vol. 42, no. 4, p. 273.

    Google Scholar 

  31. Liu, Y., Li, L., Zhang, H.-Y., Zhao, Y.-L., and Wu, X., Macromolecules, 2002, vol. 35, p. 9934.

    Article  CAS  Google Scholar 

  32. Nakashima, N., Kawabuchi, A., and Murakami, H., J. Incl. Phenom., 1998, vol. 32, p. 363.

    Article  CAS  Google Scholar 

  33. Park, J.W., Song, H.J., and Chang, H.-J., Tetrahedron Lett., 2006, vol. 47, no. 23, p. 3831.

    Article  CAS  Google Scholar 

  34. Park, J.W. and Song, H.J., Org. Lett., 2004, vol. 6, no. 26, p. 4869.

    Article  CAS  Google Scholar 

  35. Harada, A., Acc. Chem. Res., 2001, vol. 34, no. 6, p. 456.

    Article  CAS  Google Scholar 

  36. Wenz, G., Hang, B.-H., and Muller, A., Chem. Rev., 2006, vol. 106, p. 782.

    Article  CAS  Google Scholar 

  37. Del Valle, E.M.M., Proc. Biochem. Soc., 2004, vol. 39, no. 9, p. 1033.

    Article  Google Scholar 

  38. Motherwell, W.B., Bingham, M.J., and Six, Y., Tetrahedron, 2001, vol. 57, no. 22, p. 4663.

    Article  CAS  Google Scholar 

  39. Reddy, M.A., Reddy, L.R., Bhanumathi, N., and Rao, K.R., Synth. Commun., 2002, vol. 32, no. 2, p. 273.

    Article  CAS  Google Scholar 

  40. Alvarez-Parrilla, E., Al-Soufi, W., Carber, P.R., Novo, M., and Tato, J.V., J. Phys. Chem. B, 2001, vol. 105, no. 25, p. 5994.

    Article  CAS  Google Scholar 

  41. Liu, L., Li, W.-G., and Guo, Q.-X., J. Incl. Phenom., 1999, no. 34, p. 413.

  42. Choi, H.S., Takahashi, A., Ooya, T., and Yui, N., Chem. Phys. Chem., 2006, vol. 7, no. 8, p. 1668.

    CAS  Google Scholar 

  43. Choisnard, L., Geze, A., Bigan, M., and Putaux, J.-L., J. Pharm. Pharmaceut. Sci., 2005, vol. 8, no. 3, p. 593.

    CAS  Google Scholar 

  44. Daniel, M.-C. and Astruc, D., Chem. Rev., 2004, vol. 104, p. 293.

    Article  CAS  Google Scholar 

  45. Yang, Y., Li, X., Chen, J., and Bao, X., Chem. Phys. Lett., 2003, vol. 373, nos. 1–2, p. 22.

    Article  CAS  Google Scholar 

  46. Walter, R.H., Polysaccharide Association Structures in Food, New York: Marcel Dekker, 1998.

    Google Scholar 

  47. Hamilton, R.M., Park, L.G., and Heady, R.E., US Patent no. 3528819, 1970.

  48. Szejtli, J., Cyclodextrins and Their Inclusion Complexes, Budapest: Akademiai Kiado, 1982.

    Google Scholar 

  49. Li, G. and McGown, L.B., Science, 1994, vol. 264, p. 249.

    Article  CAS  Google Scholar 

  50. Steiner, T., Mason, S.A., and Saenger, W., J. Am. Chem. Soc., 1991, no. 113, p. 5676.

  51. Chen, H.-L., Zhao, B., and Wang, Z., J. Incl. Phenom., 2006, no. 56, p. 17.

  52. Saenger, W., Jacob, J., Gessler, K., Steiner, T., Hoffmann, D., Sanbe, H., Koizumi, K., Smith, S.M., and Takeshi, T., Chem. Rev., 1998, vol. 98, no. 5, p. 1787.

    Article  CAS  Google Scholar 

  53. Gattuso, G., Nepogodiev, S.A., and Stoddart, F., Chem. Rev., 1998, vol. 98, no. 5, p. 1919.

    Article  CAS  Google Scholar 

  54. Baer, A.J. and Macartney, D.H., Inorg. Chem., 2000, no. 39, p. 1410.

  55. Lo Nostro, P., Lopes, J.R., Ninham, B.W., and Baglioni, P., J. Phys. Chem. B, 2002, vol. 106, p. 2166.

    Article  Google Scholar 

  56. Lo Nostro, P., Lopes, J.R., and Cardelli, C., Langmuir, 2001, vol. 17, p. 4610.

    Article  Google Scholar 

  57. Nepogodiev, S.A. and Stoddart, J.F., Chem. Rev., 1998, vol. 98, p. 1959.

    Article  CAS  Google Scholar 

  58. Panova, I.G., Gerasimov, V.I., Grokhovskaya, T.E., and Topchieva, I.N., Dokl. Akad. Nauk, 1996, vol. 347, no. 1, p. 61.

    CAS  Google Scholar 

  59. Szejtly, J., Chem. Rev., 1998, vol. 98, no. 5, p. 1743.

    Article  Google Scholar 

  60. Takahashi, K., Chem. Rev., 1998, vol. 98, no. 5, p. 2013.

    Article  CAS  Google Scholar 

  61. Mosinger, J., Tomankova, V., Nemcova, I., and Zuka, J., Anal. lett., 2001, vol. 34, no. 12, p. 1979.

    Article  CAS  Google Scholar 

  62. Szejtly, J., Pure Appl. Chem., 2004, vol. 76, no. 10, p. 1825.

    Article  Google Scholar 

  63. Harada, A., Okada, M., Li, J., and Kamachi, M, Macromolecules, 1995, vol. 28, p. 8406.

    Article  CAS  Google Scholar 

  64. Harata, K., Chem. Rev., 1998, vol. 98, no. 5, p. 1803.

    Article  CAS  Google Scholar 

  65. Hedges, A.R., Chem. Rev., 1998, vol. 98, no. 5, p. 2035.

    Article  CAS  Google Scholar 

  66. Barbato, F., La Rotonda, M.I., Miro, A., Morrica, P., Quaglia, F., J. Incl. Phenom., 2000, no. 38, p. 423.

  67. Topchieva, I.N., Popova, E.I., Kalashnikov, F.A., Panova, I.G., Avakyan, V.G., Ksenofontov, A.L., and Gerasimov, V.I., Dokl. Akad. Nauk, 1997, vol. 357, no. 5, p. 648.

    Google Scholar 

  68. Harada, A., Kawaguchi, Y., and Hoshino, T., J. Incl. Phenom., 2001, vol. 41, p. 115.

    Article  CAS  Google Scholar 

  69. Rusa, C.C., Bullions, T.A, Fox J., Porbeni, F.E., Wang X., Tonelli A.E, Langmuir, 2002, vol. 18, p. 10016.

    Article  CAS  Google Scholar 

  70. Rekharsky, M.V. and Inoue, Y., Chem. Rev., 1998, vol. 98, no. 5, p. 1875.

    Article  CAS  Google Scholar 

  71. Hamai, S., J. Incl. Phenom., 1997, vol. 27, p. 57.

    Article  CAS  Google Scholar 

  72. Himanen, J.-P. and Korpela, T., J. Incl. Phenom., 1986, vol. 4, p. 177.

    Article  CAS  Google Scholar 

  73. Harada, A. and Kamachi, M., J. Chem. Soc., Chem. Commun., 1990, p. 1322.

  74. Harada, A. and Kamachi, M., Macromolecules, 1990, vol. 23, no. 10, p. 2821.

    Article  CAS  Google Scholar 

  75. Topchieva, I.N., Blyumenfel’d, A.L., Klyamkin, A.A., Polyakov, V.A., and Kabanov, V.A., Vysokomol. Soedin., 1994, vol. 36, no. 2, p. 271.

    CAS  Google Scholar 

  76. Popova, E.I., Kazarin, L.A., and Topchieva, I.N., Vestn. Mosk. Univ., Ser. 2 Khim., 2001, vol. 42, no. 2, p. 125.

    CAS  Google Scholar 

  77. Perekrestenko, A.D., Topchieva, I.N., Borisov, Yu.V., Grinev, V.G., Efremova, N.V., Isakov, A.I., Kalashnikov, V.A., Karezin, K.I., Krasheninnikov, V.G., Ksenofontov, A.L., Kuznetsov, S.P., Lapushkin, Yu.A., Meshkov, I.V., Panova, I.G., Popova, E.I., Sorokina, E.M., Tarasova, G.M., and Shchelagin, A.V., Inform. Byull. RFFI, 1996, vol. 4, no. 3, p. 428.

    Google Scholar 

  78. Panova, I.G., Gerasimov, V.I., Kalashnikov, F.A., and Topchieva, I.N., Vysokomol. Soedin. B, 1998, vol. 40, no. 12, p. 2077.

    CAS  Google Scholar 

  79. Harada, A., Li, J., and Kamachi, M., Nature, 1992, vol. 356, p. 325.

    Article  CAS  Google Scholar 

  80. Blake, A.J., Baum, G., Champness, N.R., Chung, S.M., Cooke, P.A., Fenske, D., Khlobystov, A.N., Lemenovskii, D.A., Li, W.-S., and Schroder, M., J. Chem. Soc., Dalton Trans., 2000, p. 4285.

  81. Chernykh, E.V., Brichkin, S.B., and Razumov, V.F., Abstract of Papers, XVIII Simpozium “Sovremennaya Khimicheskaya Fizika” (XVIII Symp. on Modern Chemical Physics) Tuapse, 2006, p. 170.

  82. Topchieva, I.N., Inform. Byull. RFFI, 1998, vol. 6, no. 3, p. 325.

    Google Scholar 

  83. Harada, A., Li, J., and Kamachi, M., Chem. Commun., 1997, p. 1413.

  84. Schneider, H.-J., Hacket, F., and Rudiger, V., Chem. Rev., 1998, vol. 98, no. 5, p. 1755.

    Article  CAS  Google Scholar 

  85. Al-Rawashdeh, N.A.F., J. Incl. Phenom., 2005, vol. 51, p. 27.

    Article  CAS  Google Scholar 

  86. Topchieva, I.N., Kolomnikova, E.L., Banatskaya, M.I., and Kabanov, V.A., Vysokomol. Soedin., 1993, vol. 35, no. 4, p. 395.

    CAS  Google Scholar 

  87. Han, C.P. and Li, H.B., Chin. Chem. Lett., 2008, vol. 19, no. 2, p. 215.

    Article  CAS  Google Scholar 

  88. Bocanegra-Diaz, A., Mohallem, N.D.S., and Sinisterra, R.D., J. Braz. Chem. Soc., 2003, vol. 14, no. 6.

  89. Racuciu, M., Creanga, D.E., Badescu, V., and Airinei, A., J. Optoelectron. Adv. Mater., 2007, vol. 9, no. 5, p. 1530.

    CAS  Google Scholar 

  90. Liu, Y., Male, K.B., Bouvrette, P., and Luong, J.H.T., Chem. Mater., 2003, vol. 15, p. 4172.

    Article  CAS  Google Scholar 

  91. Liu, J., Alvarez, J., and Kaifer, A.E., Adv. Mater., 2000, vol. 12, no. 18, p. 1381.

    Article  CAS  Google Scholar 

  92. Liu, J., Alvarez, J., Ong, W., Roman, E., and Kaifer, A.E., J. Am. Chem. Soc., 2001, vol. 123, p. 11148.

    Article  CAS  Google Scholar 

  93. Barrientos, L., Yutronic, N., Del Monte, F., Gutierrez, M.C., and Jara, P., New J. Chem., 2007, vol. 31, p. 1400.

    Article  CAS  Google Scholar 

  94. Alvarez, J., Liu, J., Roman, E., and Kaifer, A.E., Chem. Commun., 2000, p. 1151.

  95. Xue, C., Palaniappan, K., Arumugam, G., Hackney S.A., Liu, J., and Liu, H., J. Catal. Lett., 2007, vol. 116, nos. 3–4, p. 94.

    Article  CAS  Google Scholar 

  96. Zhou, Y., Yu, S.-H., Thomas, A., and Han, B.-H., Chem. Commun., 2003, p. 262.

  97. Jang, J. and Bae, J., Macromol. Rapid Commun., 2005, vol. 26, p. 1320.

    Article  CAS  Google Scholar 

  98. Wang, L., Bian, G., Wang, L., Dong, L., Chen, H., and Xia, T., Spectrochim. Acta. Part A, 2005, vol. 61, no. 6, p. 1201.

    Article  Google Scholar 

  99. Ling, X.Y., Reinhoudt, D.N., and Huskens, J., Langmuir, 2006, vol. 22, p. 8777.

    Article  CAS  Google Scholar 

  100. Mahalingam, V., Onclin, S., Peter, M., Ravoo, B.J., Huskens, J., and Reinhoudt, D.N., Langmuir, 2004, vol. 20, p. 11756.

    Article  CAS  Google Scholar 

  101. Maury, P., Peter, M., Crespo-Biel, O., Ling, X.Y., Reinhoudt, D.N., and Huskens, J., Nanotechnology, 2007, vol. 18, no. (044007), p. 9.

    Google Scholar 

  102. Huskens, J., Adv. Sci. Technol., 2006, vol. 51, p. 105.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Brichkin.

Additional information

Original Russian Text © E.V. Chernykh, S.B. Brichkin, 2010, published in Khimiya Vysokikh Energii, 2010, Vol. 44, No. 2, pp. 115–133.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernykh, E.V., Brichkin, S.B. Supramolecular complexes based on cyclodextrins. High Energy Chem 44, 83–100 (2010). https://doi.org/10.1134/S0018143910020013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143910020013

Keywords

Navigation