Methane conversion in low-temperature plasma

Abstract

The conversion of methane in electric discharges of different types and under electron beam irradiation are considered. The influence of nonequilibrium conditions of conversion in low-temperature plasma on the energy consumption, product composition, and selectivity is analyzed. The results of works on plasma pyrolysis, partial plasma oxidation, and steam and carbon dioxide reforming of methane in a low-temperature plasma are discussed. It is shown that the use of chain processes makes it possible to substantially reduce the power consumption for methane conversion by an electrophysical device.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Fincke, J.R., Anderson, R.P., Hyde, T., Detering, B.A., Wright, R., Bewley, R.L., Haggard, D.C., and Swank, W.D., Plasma Chem. Plasma Process., 2002, vol. 22, no. 1, p. 107.

    Article  Google Scholar 

  2. 2.

    Babaritskii, A.I., Deminskii, M.A., Demkin, S.A., and Zhivotov, V.K., Khim. Vys. Energ., 1999, vol. 33, no. 1, p. 49 [High Energy Chem., 1999, vol. 33, no. 1, p. 45].

    Google Scholar 

  3. 3.

    Zhivotov, V.K., Potapkin, B.V., and Rusanov, V.D., in Entsiklopediya nizkotemperaturnoi plazmy, (Encyclopedia of Low-Temperature Plasma), Moscow: Fizmatlit, 2005, Ser. B, vol. VIII-1, p. 4.

    Google Scholar 

  4. 4.

    Czernichowski, A., Proc. Int. Symp. Hydrogen Power, Theoretical and Engineering Solutions, St. Petersburg: St.-Petersburg, 1999, p. 98.

    Google Scholar 

  5. 5.

    Li, X.S., Zhu, A.M., Wang, K.J., Xu, Y., and Song, Z.M., Catal. Today, 2004, vol. 98, p. 617.

    Article  CAS  Google Scholar 

  6. 6.

    Li, X.S., Shi, C., Xu, Y., Wang, K.J., and Zhu, A.M., Green Chem., 2007, vol. 9, p. 647.

    Article  CAS  Google Scholar 

  7. 7.

    Pushkarev, A.I., Novoselov, Yu.N., and Remnev, G.E., Tsepnye protsessy v nizkotemperaturnoi plazme (Chain Processes in Low-Temperature Plasma), Novosibirsk: Nauka, 2006.

    Google Scholar 

  8. 8.

    Pushkarev, A.I., Remnev, G.E., and Ponomarev, D.V., Fundamental’nye problemy prilozhenii fiziki nizkotemperaturnoi plazmy: Materialy lektsii Vserossiiskogo simpoziuma molodykh uchenykh, studentov i aspirantov (Proc. All-Russia Symp. of Young Scientists, Students, and Aspirants on Fundamental Problems of Application of Low-Temperature Plasma Physics), Petrozavodsk, 2005, p. 26.

  9. 9.

    Shtern, V.Ya., Mekhanizm okisleniya uglevodorodov v gazovoi faze (The Mechanism of Hydrocarbon Oxidation in Gaseous Phase), Moscow: AN SSSR, 1960.

    Google Scholar 

  10. 10.

    Arutyunov, V.S. and Krylov, O.V., Okislitel’nye prevrashcheniya metana (Oxidative Conversion of Methane), Moscow: Nauka, 1998.

    Google Scholar 

  11. 11.

    Rusanov, V.D., Babaritskii, A.I., Gerasimov, E.N., Deminskii, M.A., Demkin, S.A., Zhivotov, V.K., Moskovskii, A.S., Potapkin, B.V., Smirnov, R.V., and Strelkova, M.I., Dokl. Akad. Nauk, 2003, vol. 389, no. 3, p. 324.

    Google Scholar 

  12. 12.

    Lesueur, H., Czernichowski, A., and Chapelle, A., Int. J. Hydrogen Energy, 1994, vol. 19, no. 2, p. 139.

    Article  CAS  Google Scholar 

  13. 13.

    Lee, D.H., Kim, K.T., Song, Y.-H, and Cha, M.S., Proc. 18th Int. Symp. on Plasma Chemistry, Kyoto, 2007, p. 153.

  14. 14.

    Heo, J., Choi, J.-W., Lee, H., Sekiguchi, H., and Song, H.K., Proc. 18th Int. Symp. on Plasma Chemistry, Kyoto, 2007, p. 554.

  15. 15.

    Remnev, G.E., Pushkarev, A.I., and Ezhov, V.V., Proc. 13th Int. Symp. on High Current Electronics, Tomsk, 2004, p. 447.

  16. 16.

    Indarto, A., Choi, J.W., Lee, H., and Song, H.K., Proc. 18th Int. Symp. on Plasma Chemistry, Kyoto, 2007, p. 194.

  17. 17.

    Mutaf-Yardimci, O., Saveliev, A., Fridman, A., and Kennedy, L.A., Int. J. Hydrogen Energy, 1998, vol. 23, no. 12, p. 1109.

    Article  CAS  Google Scholar 

  18. 18.

    Lee, H., Choi, J.-W., Song, H.K., and Lee, C.-H., Proc. 4th Int. Symp. on Pulsed Power and Plasma Applications, Nagaoka 2003, p. 146.

  19. 19.

    Song, H.K., Lee, H., Choi, J.-W., and Na, B., Plasma Chem. Plasma Process., 2004, vol. 24, no. 1, p. 57.

    Article  Google Scholar 

  20. 20.

    Rusu, I. and Cormier, J.-M., Chem. Eng. J., 2003, vol. 91, no. 1, p. 23.

    Article  CAS  Google Scholar 

  21. 21.

    Cormier, J.-M. and Rusu, I., J. Phys. D: Appl. Phys., 2001, vol. 34, p. 2798.

    Article  CAS  Google Scholar 

  22. 22.

    Azizov, R.I., Babaritskii, A.I., and Demkin, S.A., in Gazokhimiya v XXI veke. Problemy i perspektivy., (Gas Chemistry in XXI Century: Problems and Prospects), Vladimirov, A.I. and Lapidus, A.L., Eds., Moscow: Neft’ i Gaz, 2003.

    Google Scholar 

  23. 23.

    Sekine, Y., Urasaki, K., Kado, S., Asai, S., Matsukata, M., Kikuchi, E., Proc. 16th Int. Symp. on Plasma Chemistry, Taormina, 2003, p. 213.

  24. 24.

    Zhdanok, S.A., Krauklis, A.V., and Bouyakov, I.F., Proc. IV Intern. School-Seminar Modern Problems of Combustion and its Application, Minsk, 2001, p. 66.

  25. 25.

    Chavadej, S., Rueangjitt, N., and Sreethawong, T., Proc. 18th Int. Symp. on Plasma Chemistry, Kyoto, 2007, p. 552.

  26. 26.

    Bromberg, L., Cohn, D.R., Rabinovich, A., O’Brien, C., and Hochgreb, S., Energy Fuels, 1998, vol. 1, no. 1, p. 11.

    Article  Google Scholar 

  27. 27.

    Bromberg, L., Cohn, D.R., Rabinovich, A., and Alexeev, N., Int. J. Hydrogen Energy, 1999, vol. 24, p. 1131.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. I. Pushkarev.

Additional information

Original Russian Text © A.I. Pushkarev, Ai-Min Zhu, Xiao-Song Li, R.V. Sazonov, 2009, published in Khimiya Vysokikh Energii, 2009, vol. 43, No. 3, pp. 202–208.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pushkarev, A.I., Zhu, AM., Li, XS. et al. Methane conversion in low-temperature plasma. High Energy Chem 43, 156–162 (2009). https://doi.org/10.1134/S0018143909030023

Download citation

Keywords

  • Energy Consumption
  • Partial Oxidation
  • High Energy Chemistry
  • Methane Conversion
  • Steam Methane