Skip to main content
Log in

Oxidative degradation of formic acid in aqueous solution upon dielectric-barrier discharge treatment

  • Plasma Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of degradation of formic acid in an aqueous solution during its dielectric-barrier discharge treatment in oxygen was studied. It was shown that, the lower the initial concentration and the longer the time of contact of the solution and the gas with the discharge zone, the higher the degree of conversion of the acid, which can reach 99%. It was found that the main degradation products (∼94% on carbon basis) are formaldehyde (∼24%) and carbon dioxide (∼70%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trapido, M., Munter, R., and Veressinina, Y., Proc. Int. Conf. International Ozone Association of the European- Africa-Asian-Australasian Group in Conjuction with Acwatech, Moscow, 1998, p. 519.

  2. Pikaev, A.K., Khim. Vys. Energ., 2000, vol. 34, no. 2, p. 83 [High Energy Chem., 2000, vol. 34, no. 2, p. 55].

    Google Scholar 

  3. Lerouge, S., Fozza, A.C., Wertheimer, M.R., Marchang, R., and Yakia, L.H., Plasmas and Polymers, 2000, vol. 5, no. 1, p. 31.

    Article  CAS  Google Scholar 

  4. Grabowski, L.R., Van Veldhuizen, E.M., Pemen, A.J., and Rutgers, W.R., Plasma Chem. Plasma Process., 2006, vol. 26, no. 4, p. 3.

    Article  CAS  Google Scholar 

  5. Gao, J., Lin, Y., Lumei Pu Wu, Y., Yu, J., and Lu, Q., Plasma Sources Sci. Technol., 2003, vol. 12, p. 333.

    Article  Google Scholar 

  6. Grymonpre, D.R., Sharma, A.K., Finney, W.C., and Locke, B.R., Chem. Eng. J., 2001, vol. 82, nos. 1–3, p. 189.

    Article  CAS  Google Scholar 

  7. Bubnov, A.G., Burova, E.Yu., Grinevich, V.I., Rybkin, V.V., Kim, J.-K., and Choi, H.-S., Plasma Chem. Plasma Process., 2006, vol. 26, no. 1, p. 19.

    Article  CAS  Google Scholar 

  8. Bubnov, A.G., Grinevich, V.I., Kuvykin, N.A., and Maslova, O.N., Khim. Vys. Energ., 2004, vol. 38, no. 1, p. 44 [High Energy Chem., 2004, vol. 38, no. 1, p. 41].

    Google Scholar 

  9. Bubnov, A.G., Grinevich, V.I., and Maslova, O.N., Zh. Prikl. Khim., 2006, vol. 79, no. 6, p. 994.

    Google Scholar 

  10. Simonov, V.A., Analiz vozdushnoi sredy pri pererabotke polimernykh materialov (Analysis of Environmental Air in Processing of Polymer Materials), Leningrad: Khimiya, 1988.

    Google Scholar 

  11. Lur’e, Yu.Yu., Analiticheskaya khimiya promyshlennykh stochnykh wod (Analytical Chemistry of Industrial Waste Waters), Moscow: Khimiya, 1984.

    Google Scholar 

  12. Grishaeva, T.I., Metody lyuminestsentnogo analiza. Uchebnoe posobie dlya vuzov (Luminescence Analysis Techniques: A Textbook), St. Petersburg: ANO NPO “Professional”, 2003.

    Google Scholar 

  13. Bubnov, A.G., Grinevich, V.I., and Kuvykin, N.A., Khim. Vys. Energ., 2004, vol. 38, no. 5, p. 380 [High Energy Chem., 2004, vol. 38, no. 5, p. 338].

    Google Scholar 

  14. Novikov, Yu.V., Lastochkina, K.O., and Boldina, Z.N., Metody issledovaniya kachestva vody vodoemov (Methods for Determination of Water Quality in Water Bodies), Moscow: Meditsina, 1990.

    Google Scholar 

  15. Reid, R.C. and Sherwood, T.K., The Properties of Gases and Liquids: Their Estimation and Correlation, New York: McGraw-Hill, 1966.

    Google Scholar 

  16. Bubnov, A.G., Grinevich, V.I., Maslova, O.N., and Rybkin, V.V., Teor. Osn. Khim. Tekhnol., 2007, vol. 41, no. 4, p. 420.

    Google Scholar 

  17. Razumovskii, S.D. and Zaikov, G.E., Ozon i ego reaktsii s organicheskimi soedineniyami (Ozone and Its Reactions with Organic Compounds), Moscow: Nauka, 1974.

    Google Scholar 

  18. Titov, V.A., Rybkin, V.V., Maximov, A.I., and Choi, H.S., Plasma Chem. Plasma Process., 2005, vol. 25, no. 5, p. 503.

    Article  CAS  Google Scholar 

  19. Goodman, J., Hickling, A., and Schofield, B., J. Electroanal. Chem., 1973, vol. 48, no. 2, p. 319.

    Article  CAS  Google Scholar 

  20. Denaro, A.R. and Hickling, A., Electrochem. Soc., 1958, vol. 105, no. 5, p. 265.

    Article  CAS  Google Scholar 

  21. Isidorov, V.A., Ekologicheskaya khimiya. Uch. posobie dlya vuzov (Environmental Chemistry Textbook), St. Petersburg: Khimizdat, 2001.

    Google Scholar 

  22. Aristova, N.A., Karpel’ Vel’ Leitner, N., and Piskarev, I.M. Khim.Vys. Energ., 2002, vol. 36, no. 3, p. 228 [High Energy Chem., 2002, vol. 36, no. 3, p. 197].

    Google Scholar 

  23. Gai, K. and Dong, Y., Plasma Sources Sci. Technol., 2005, vol. 14, no. 3, p. 589.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Grinevich.

Additional information

Original Russian Text © V.I. Grinevich, N.A. Plastinina, V.V. Rybkin, A.G. Bubnov, 2009, published in Khimiya Vysokikh Energii, 2009, Vol. 43, No. 2, pp. 182–186.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinevich, V.I., Plastinina, N.A., Rybkin, V.V. et al. Oxidative degradation of formic acid in aqueous solution upon dielectric-barrier discharge treatment. High Energy Chem 43, 138–142 (2009). https://doi.org/10.1134/S001814390902012X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001814390902012X

Keywords

Navigation