Skip to main content
Log in

The mechanism of formation of microneedles on the silicon surface in fluorinated plasma via the cyclic etching-deposition process

  • Plasma Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The mechanism of the formation of microneedles on the silicon surface in SF6/C4F8 plasmas in the two-stage cyclic etching/deposition process is proposed. By means of scanning electron microscopy, it was shown that microneedle growth nuclei are nanosized entities of carbon nanofilaments. They are formed on the Si surface during the reactive ion etching of a fluorocarbon polymer film. As the number of etching/deposition cycles increases, the length of filaments increases and, beginning from a certain cycle, the filaments form a network of the fluorocarbon micromask needed for the formation of microneedles. A simulation of the microneedle formation by means of the hybrid string-cell representation of the profile and the Monte Carlo representation of the particle flux showed satisfactory agreement with the experimental data and the proposed mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rangelow, I.W. and Biehl, S., J. Vac. Sci. Technol., B, 2001, vol. 19, no. 3, p. 916.

    Article  CAS  Google Scholar 

  2. Konechika, M., Sugimoto, N., and Mitsushima, Y., J. Vac. Sci. Technol., B, 2002, vol. 20, no. 4, p. 1298.

    Article  Google Scholar 

  3. Chang, C., Wang, Y., Kanamori, Y., Shih, J., Kawai, Y., Lee, C., Wu, K., and Esashi, M., J. Micromech. Microeng., 2005, vol. 15, no. 3, p. 580.

    Article  CAS  Google Scholar 

  4. Shieh, J., Lin, C.P., Yang, M.C., J. Phys. D: Appl. Phys., 2007, vol. 40, no. 8, p. 2242.

    Article  CAS  Google Scholar 

  5. Stubenrauch, M., Fischer, M., Kremin, C., Stoebenau, S., Albrecht, A., and Nagel, O., J. Micromech. Microeng., 2006, vol. 16, no. 6, p. 82.

    Article  Google Scholar 

  6. Lin, G.-R., Lin, C.-J., and Kou, H.-C., Appl. Phys. Lett., 2007, vol. 91, no. 9, p. 093122.

  7. Sainiemi, L., Keskinen, H., Aromaa, M., Luosujarvi, L., Grigoras, K., Kotiaho, T., Makela, J.M., and Fransila, S., Nanotecnology, 2007, vol. 18, no. 50, p. 505303.

  8. Gharghi, M. and Sivoththaman, S., J. Vac. Sci. Technol., A, 2006, no. 3, p. 723.

  9. Dussart, R., Mellhaoui, X., Lefaucheux, P., Volatier, M., Socquet-Clere, Braut, P., and Ranson, P., J. Phys. D. Appl. Phys., 2005, vol. 38, p. 3395.

    Article  CAS  Google Scholar 

  10. Amirov, I.I. and Alov, N.V., Khim. Vys. Energ., 2008, vol. 38, no. 2, p. 164 [High Energy Chem., 2008, vol. 38, no. 2, p. 132].

    Google Scholar 

  11. Amirov, I.I. and Alov, N.V., Khim. Vys. Energ., 2006, vol. 36, no. 4, p. 311 [High Energy Chem., 2006, vol. 36, no. 4, p. 267].

    Google Scholar 

  12. Shumilov, A.S. and Amirov, I.I., Mikroelektronika, 2007, vol. 36, no. 4, p. 289.

    Google Scholar 

  13. Takahashi, K. and Tachibana, K., J. Appl. Phys., 2001, vol. 89, no. 2, p. 893.

    Article  CAS  Google Scholar 

  14. Morozov, O.V. and Amirov, I.I., Mikroelektronika, 2007, vol. 36, no. 5, p. 380.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Amirov.

Additional information

Original Russian Text © I.I. Amirov, A.S. Shumilov, 2008, published in Khimiya Vysokikh Energii, 2008, Vol. 42, No. 5, pp. 446–450.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amirov, I.I., Shumilov, A.S. The mechanism of formation of microneedles on the silicon surface in fluorinated plasma via the cyclic etching-deposition process. High Energy Chem 42, 399–403 (2008). https://doi.org/10.1134/S0018143908050111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143908050111

Keywords

Navigation