Advertisement

High Energy Chemistry

, Volume 42, Issue 5, pp 399–403 | Cite as

The mechanism of formation of microneedles on the silicon surface in fluorinated plasma via the cyclic etching-deposition process

  • I. I. AmirovEmail author
  • A. S. Shumilov
Plasma Chemistry

Abstract

The mechanism of the formation of microneedles on the silicon surface in SF6/C4F8 plasmas in the two-stage cyclic etching/deposition process is proposed. By means of scanning electron microscopy, it was shown that microneedle growth nuclei are nanosized entities of carbon nanofilaments. They are formed on the Si surface during the reactive ion etching of a fluorocarbon polymer film. As the number of etching/deposition cycles increases, the length of filaments increases and, beginning from a certain cycle, the filaments form a network of the fluorocarbon micromask needed for the formation of microneedles. A simulation of the microneedle formation by means of the hybrid string-cell representation of the profile and the Monte Carlo representation of the particle flux showed satisfactory agreement with the experimental data and the proposed mechanism.

Keywords

Trench Silicon Surface High Energy Chemistry Deep Trench Silicon Etching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rangelow, I.W. and Biehl, S., J. Vac. Sci. Technol., B, 2001, vol. 19, no. 3, p. 916.CrossRefGoogle Scholar
  2. 2.
    Konechika, M., Sugimoto, N., and Mitsushima, Y., J. Vac. Sci. Technol., B, 2002, vol. 20, no. 4, p. 1298.CrossRefGoogle Scholar
  3. 3.
    Chang, C., Wang, Y., Kanamori, Y., Shih, J., Kawai, Y., Lee, C., Wu, K., and Esashi, M., J. Micromech. Microeng., 2005, vol. 15, no. 3, p. 580.CrossRefGoogle Scholar
  4. 4.
    Shieh, J., Lin, C.P., Yang, M.C., J. Phys. D: Appl. Phys., 2007, vol. 40, no. 8, p. 2242.CrossRefGoogle Scholar
  5. 5.
    Stubenrauch, M., Fischer, M., Kremin, C., Stoebenau, S., Albrecht, A., and Nagel, O., J. Micromech. Microeng., 2006, vol. 16, no. 6, p. 82.CrossRefGoogle Scholar
  6. 6.
    Lin, G.-R., Lin, C.-J., and Kou, H.-C., Appl. Phys. Lett., 2007, vol. 91, no. 9, p. 093122.Google Scholar
  7. 7.
    Sainiemi, L., Keskinen, H., Aromaa, M., Luosujarvi, L., Grigoras, K., Kotiaho, T., Makela, J.M., and Fransila, S., Nanotecnology, 2007, vol. 18, no. 50, p. 505303.Google Scholar
  8. 8.
    Gharghi, M. and Sivoththaman, S., J. Vac. Sci. Technol., A, 2006, no. 3, p. 723.Google Scholar
  9. 9.
    Dussart, R., Mellhaoui, X., Lefaucheux, P., Volatier, M., Socquet-Clere, Braut, P., and Ranson, P., J. Phys. D. Appl. Phys., 2005, vol. 38, p. 3395.CrossRefGoogle Scholar
  10. 10.
    Amirov, I.I. and Alov, N.V., Khim. Vys. Energ., 2008, vol. 38, no. 2, p. 164 [High Energy Chem., 2008, vol. 38, no. 2, p. 132].Google Scholar
  11. 11.
    Amirov, I.I. and Alov, N.V., Khim. Vys. Energ., 2006, vol. 36, no. 4, p. 311 [High Energy Chem., 2006, vol. 36, no. 4, p. 267].Google Scholar
  12. 12.
    Shumilov, A.S. and Amirov, I.I., Mikroelektronika, 2007, vol. 36, no. 4, p. 289.Google Scholar
  13. 13.
    Takahashi, K. and Tachibana, K., J. Appl. Phys., 2001, vol. 89, no. 2, p. 893.CrossRefGoogle Scholar
  14. 14.
    Morozov, O.V. and Amirov, I.I., Mikroelektronika, 2007, vol. 36, no. 5, p. 380.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Ioffe Physicotechnical Institute (Yaroslavl Branch)Russian Academy of SciencesYaroslavlRussia

Personalised recommendations