Skip to main content

Formation of microstructures on silicon surface in a fluorinated plasma via the cyclic etching-passivation process

Abstract

The conditions and causes of formation of microneedles and columnar structures on the surface of silicon during deep anisotropic etching in an SF6/C4F8 plasma in the two-stage cyclic mode were determined. The appearance of microstructures is accelerated with an increase in the thickness of the fluorocarbon film formed on the silicon surface at the step of passivation in a C4F8 plasma and with an increase is the rate of etching the film in an SF6 plasma. By means of X-ray photoelectron spectroscopy, it was shown that the formation of carbon residues of fluorocarbon film etching on the Si surface is enhanced under these conditions. Building-up on the surface in the cyclic process, the residues as a micromasking coating lead to the formation of microneedles and columnar structures.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    McAuley, S.A., Ashraf, H., Atabo, L., Chambers, A., Hall, S., Hopkins, J., and Nicholls, G., J. Phys., D: Appl. Phys., 2001, vol. 34, p. 2769.

    CAS  Article  Google Scholar 

  2. 2.

    Laermer, F. and Urban, A., Microelectron. Eng., 2003, vols. 67–68, p. 349.

    Article  Google Scholar 

  3. 3.

    Jansen, H., de Boer, M., and Ewenspoek, M., J. Micromech. Microeng., 1995, vol. 5, p. 115.

    CAS  Article  Google Scholar 

  4. 4.

    Dussart, R., Mellhaoui, X., Lefaucheux, P., Volatier, M., Socquet-Clere, Braut, P., and Ranson, P., J. Phys., D: Appl. Phys., 2005, vol. 38, p. 3395.

    CAS  Article  Google Scholar 

  5. 5.

    Amirov, I.I., Morozov, O.V., Kal’nov, V.A., and Orlikovskii, A.A., Mikrosist. Tekh., 2004, vol. 12, p. 15.

    Google Scholar 

  6. 6.

    Chen K.-S. and Ayon A.A., Microelectromechan. Syst., 2002, vol. 11, no. 3, p. 264.

    CAS  Article  Google Scholar 

  7. 7.

    Kanechika, M., Sugimoto, N., and Mitsushima, Y., J. Vac. Sci. Technol., B, 2002, vol. 20, p. 1298.

    CAS  Article  Google Scholar 

  8. 8.

    Gharghi, M. and Sivoththaman, S., J. Vac. Sci. Technol., A, 2006, vol. 24, no. 3, p. 723.

    CAS  Article  Google Scholar 

  9. 9.

    Chang, C., Wang, Y., Kanamori, Y., Shin, J., Kawai, Y., Lee, C., Wu, K., and Esashi, M., J. Micromech. Microeng., 2005, vol. 15, p. 580.

    CAS  Article  Google Scholar 

  10. 10.

    Stubenrauch, M., Fischer, M., Kremin, C., Stoebenau, S., Albrecht, A., and Nagel, O., J. Micromech. Microeng., 2006, vol. 16, p. 82.

    Article  Google Scholar 

  11. 11.

    Amirov, I.I. and Alov, N.V., Khim. Vys. Energ., 2006, vol. 36, no. 4, p. 311 [High Energy Chem., 2006, vol. 36, no. 4, p. 267].

    Google Scholar 

  12. 12.

    Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, Briggs, D. and Seach, M.P., Eds., Chichester: Wiley, 1983.

    Google Scholar 

  13. 13.

    Methods of Surface Analysis, Czanderna, A.W., Ed., Amsterdam: Elsevier, 1975.

    Google Scholar 

  14. 14.

    Maruyama, T., Fujiwara, N., Siozawa, K., and Yoneda, M., Jpn. J. Appl. Phys., 1996, vol. 35, no. 4B, p. 2463.

    CAS  Article  Google Scholar 

  15. 15.

    Takahashi, K. and Tachibana, K., J. Appl. Phys., 2001, vol. 89, no. 2, p. 893.

    CAS  Article  Google Scholar 

  16. 16.

    Laballe, C.B., Donnelly, V.M., Bogart, G.R., Opila, R.L., and Kornblit, A., J. Vac. Sci. Technol., A, 2004, vol. 22, no. 6, p. 2500.

    Article  Google Scholar 

  17. 17.

    Zheng, L., Ling, L., Hua, X., Oehrlein, G.S., and Hudson, E.A., J. Vac. Sci. Technol., A, 2005, vol. 23, no. 4, p. 634.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. I. Amirov.

Additional information

Original Russian Text © I.I. Amirov, N.V. Alov, 2008, published in Khimiya Vysokikh Energii, 2008, Vol. 42, No. 2, pp. 164–168.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amirov, I.I., Alov, N.V. Formation of microstructures on silicon surface in a fluorinated plasma via the cyclic etching-passivation process. High Energy Chem 42, 132–136 (2008). https://doi.org/10.1134/S0018143908020136

Download citation

Keywords

  • Trench
  • Silicon Surface
  • High Energy Chemistry
  • Columnar Structure
  • Photoionization Cross Section