Skip to main content
Log in

Positronium annihilation data and actual free-volume distribution in polymers

  • Chemistry of New Atoms
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Determination of the size distribution of free-volume holes in solids, in particular, polymers, is an important physicochemical problem. The positron annihilation technique has been proposed for this purpose. The central point in this technique is the quantitative interpretation of data, especially, for substances with a high specific surface area. A developed free-volume system in open-pore membrane materials, such as poly(trimethylsilylpropyne) PTMSP and the spirocyclically bound benzodioxane polymer PIM-1, and polymeric sorbents (hypercrosslinked polystyrenes) makes it possible for the first time to compare the sorption characteristics and positron annihilation data on the character of size distribution of nanopores in these polymers. In combination with the results of mathematical simulation of the structure and radiothermoluminescence measurements, the array of data indicate the structural inhomogeneity of the test amorphous materials. It was shown that this inhomogeneity in relation to the positron annihilation technique is expressed in the insufficiency of the representation of the orthopositronium decay curve by one component that takes into account the Gaussian lifetime distribution (symmetrical pore size distribution) and in the necessity of use of several decay components. The feasibility of revealing a nonrandom character of pore size distribution gives the positron annihilation technique an advantage over other approaches (inverse gas chromatography, 129Xe NMR) to investigation of nanopores in polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartenev, G.M. and Lomovskikh, V.A., Vysokomol. Soedin., Ser. A, 2002, vol. 44, no. 8, p. 1331.

    CAS  Google Scholar 

  2. Shantarovich, V.P., Suzuki, T., Ito, Y., Kondo, K., Yu, R.S., Budd, P.M., Yampolskii, Yu.P., Berdonosov, S.S., and Eliseev, A.A., Phys. Status Solidi C (in press).

  3. Shantarovich, V.P., Suzuki, T., Ito, Y., Kondo, K., Gustov, V.W., Pastukhov, A.V., Sokolova, L.V., Polyakova, A.V., and Belousova, E.V., J. Radioanal. Nucl. Chem., 2007, vol. 272, no. 3, p. 645.

    Article  CAS  Google Scholar 

  4. Shantarovich, V.P., Suzuki, T., Ito, Y., Yu, R.S., Kondo, K., Yampolskii, Yu.P., and Alentiev, A.Yu., Radiat. Phys. Chem., 2007, vol. 76, no. 2, p. 134.

    Article  CAS  Google Scholar 

  5. Principles and Applications of Positron and Positronium Chemistry, Jean, Y.C., Mallon, P.E., and Schrader, D.M., Eds., New Jersey: World Scientific, 2003.

    Google Scholar 

  6. Horvath, G. and Kawazoe, K., J. Chem. Eng. Jpn., 1983, vol. 16, p. 470.

    CAS  Google Scholar 

  7. Golemme, G., Nagy, G.B., Fonseca, A., Algiery, C., and Yampolskii, Yu., Polymer, 2003, vol. 44, no. 17, p. 5039.

    Article  CAS  Google Scholar 

  8. Pastukhov, A.V., Babushkina, T.A., Davankov, V.A., Klimova, T.P., and Shantarovich, V.P., Dokl. Akad. Nauk, 2006, vol. 411, no. 2, p. 216.

    Google Scholar 

  9. Hofmann, D., Fritz, L., Schepers, C., and Bohning, M., Macromol. Theory Simul., 2000, vol. 9, p. 293.

    Article  CAS  Google Scholar 

  10. Kirkegaard, P., Eldrup, M., Mogensen, O.E., and Pedersen, N., Comput. Phys. Commun, 1981, vol. 23, p. 307.

    Article  CAS  Google Scholar 

  11. Dlubek, G. and Eichler, S., Phys. Status Solidi A, 1998, vol. 168, no. 2, p. 333.

    Article  CAS  Google Scholar 

  12. Dlubek, G., Hubner, Ch., and Eichler, S., Nucl. Instrum. Methods Phys. Res., 1998, vol. 142, nos. 1–2, p. 191.

    CAS  Google Scholar 

  13. Mogensen, O.E, in Positron Annihilation in Chemistry, Goldanskii, V.I., Schaefer, F.P., and Toennies, J.P., Eds., Berlin: Springer, 1995.

    Google Scholar 

  14. Gregori, R.B. and Zhu, Y., Nucl. Instrum. Methods, A, 1990, vol. 290, nos. 1–2, p. 172.

    Article  Google Scholar 

  15. Shukla, A., Peter, M., and Hofmann, L., Nucl. Instrum. Methods, A, 1993, vol. 335, no. 2, p. 310.

    Article  CAS  Google Scholar 

  16. Shantarovich, V.P., Novikov, Yu.A., Suptel, Z.K., Kevdina, I.B., Masuda, T., Khotimskii, V.S., and Yampolskii, Yu.P., Radiat. Phys. Chem., 2000, vol. 58, nos. 5–6, p. 513.

    Article  CAS  Google Scholar 

  17. Consolati, G., Genko, J., Pegoraro, M., and Zandorighi, L., J. Polym. Sci.: Part B, 1996, vol. 34, no. 2, p. 357.

    Article  CAS  Google Scholar 

  18. Consolati, G., Rurali, R., and Stefanetti, M., Chem. Phys., 1998, vol. 237, no. 3, p. 493.

    Article  CAS  Google Scholar 

  19. Budd, P.M., Msayib, K.J., Tattershall, C.S., Ghanem, B.S., Raynolds, K.J., McKeown, N.B., and Fritsch, D., J. Membr. Sci., 2005, vol. 251, nos. 1–2, p. 263.

    Article  CAS  Google Scholar 

  20. McKeown, N.B., Budd, P., Msayib, K.J., Ghanem, B.S., Kingston, H.J., Tattershall, C.E., Makhseed, S., Reynolds, K.J., and Fritsch, D., Chem. Eur. J., 2005, vol. 11, p. 2610.

    Article  CAS  Google Scholar 

  21. Shantarovich, V.P., Suzuki, T., He, C., Davankov, V.A., Pastukhov, A.V., Tsyurupa, M.P., Kondo, K., and Ito, Y., Macromolecules, 2002, vol. 35, no. 26, p. 9723.

    Article  CAS  Google Scholar 

  22. Tsyurupa, M.P., Volynskaya, A.V., Belchich, L.A., and Davankov, V.A., J. Appl. Polym. Sci., 1983, vol. 28, no. 2, p. 685.

    Article  CAS  Google Scholar 

  23. Tao, S.J., J. Chem. Phys., 1972, vol. 56, no. 11, p. 5499.

    Article  CAS  Google Scholar 

  24. Eldrup, M., Lightbody, D., and Sherwood, J.N., Chem. Phys., 1981, vol. 63, no. 1, p. 51.

    Article  CAS  Google Scholar 

  25. Shantarovich, V.P., Suzuki, T., He, C., Kevdina, I.B., Davankov, V.A., Pastukhov, A.V., and Tsyurupa, M.P., Khim. Vys. Energ., 2004, vol. 38, no. 4, p. 310 [High Energy Chem., 2004, vol. 38, no. 4, p. 274].

    Google Scholar 

  26. Gregory, R.B., Nucl. Instrum. Methods, A, 1991, vol. 302, no. 3, p. 496.

    Article  Google Scholar 

  27. Dlubek, G., Eichler, S., Hubner, Ch., and Nagel, Ch., Phys. Status Solidi A, 1999, vol. 174, no. 2, p. 313.

    Article  CAS  Google Scholar 

  28. Dai, G.H. and Jean, Y.C., Nucl. Instrum. Methods Phys. Res., 1995, vol. B99, nos. 1–4, p. 357.

    Google Scholar 

  29. Kansy, J., LT for Windows, Version 9.0 (private communication).

  30. Hirayama, Y., Yoshinaga, T., Kusuki, Y., Ninimiya, K., Sakakibara, T., and Tamari, T., J. Membr. Sci., 1996, vol. 111, no. 2, p. 169.

    Article  CAS  Google Scholar 

  31. Shantarovich, V.P., Suzuki, T., He, C., Djourelov, N., Kevdina, I.B., Davankov, V.A., Pastukhov, A.V., and Ito, Y., Mater. Sci. Forum, 2004, vol. 346, p. 445.

    Google Scholar 

  32. Shantarovich, V.P., Suzuki, T., Djourelov, N., Shimazu, A., Gustov, V.W., and Kevdina, I.B., Acta Phys. Pol., A, 2005, vol. 107, no. 5, p. 629.

    CAS  Google Scholar 

  33. Shantarovich, V.P., Suzuki, T., Ito, Y., Kondo, K., Gustov, V.W., Melikhov, I.V., Berdonosov, S.S., Ivanov, L.N., and Yu, R.S., Radiat. Phys. Chem., 2007, vol. 76, no. 2, p. 257.

    Article  CAS  Google Scholar 

  34. Hirata, K., Kobayashi, Y., and Ujihira, Y., J. Chem. Soc., Faraday Trans., 1996, vol. 92, no. 6, p. 985.

    Article  CAS  Google Scholar 

  35. McGervey, J.D., Zhibin, Yu., Jamison, A.M., and Simha, R., Positron Annihilation ICPA-10. Mat. Sci. Forum, 1995, vols. 175–178, p. 727.

    Google Scholar 

  36. Jean, Y.C., Macromolecules, 1996, vol. 29, no. 17, p. 5756.

    Article  CAS  Google Scholar 

  37. Baugher, A.H., Kossler, W.J., and Petzinger, K.G., Macromolecules, 1996, vol. 29, no. 22, p. 7280.

    Article  CAS  Google Scholar 

  38. Kansy, J. and Suzuki, T., Radiat. Phys. Chem., 2003, vol. 68, nos. 3–4, p. 497.

    Article  CAS  Google Scholar 

  39. Hofmann, D., Heuchel, M., Yampolskii, Yu., Khotimskii, V., and Shantarovich, V., Macromolecules, 2002, vol. 35, no. 6, p. 2129.

    Article  CAS  Google Scholar 

  40. Shantarovich, V.P., Kevdina, I.B., and Yampol’skii, Yu.P., Khim. Vys. Energ., 2000, vol. 34, no. 4, p. 309 [High Energy Chem., 2000, vol. 34, no. 4, p. 265].

    Google Scholar 

  41. He, C., Suzuki, T., Shantarovich, V.P., Kondo, K., and Ito, Y., Chem. Phys., 2003, vol. 286, nos. 2–3, p. 249.

    Article  CAS  Google Scholar 

  42. Goworek, T., Ciesielski, K., Jasinska, B., and Wawryszczuk, J., Chem. Phys., 1998, vol. 230, nos. 2–3, p. 305.

    Article  CAS  Google Scholar 

  43. Jasinska, B., Koziel, A.E., and Goworek, T., J. Radioanal. Nucl. Chem., 1996, vol. 210, no. 3, p. 617.

    CAS  Google Scholar 

  44. Dlubek, G., Bondarenko, V., Piontek, J., Supej, M., Wutzler, A., and Krauze-Rehberg, R., Polymer, 2003, vol. 44, no. 6, p. 1921.

    Article  CAS  Google Scholar 

  45. Angel, K.A., Water in Polymers, Rowland, S.P., Ed., Washington D.C.: American Chemical Society, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Shantarovich.

Additional information

Original Russian Text © V.P. Shantarovich, T. Suzuki, Yu.P. Yampol’skii, P. Budd, V.V. Gustov, I.B. Kevdina, A.V. Pastukhov, S.S. Berdonosov, V.E. Bozhevol’nov, 2007, published in Khimiya Vysokikh Energii, 2007, Vol. 41, No. 5, pp. 423–433.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shantarovich, V.P., Suzuki, T., Yampol’skii, Y.P. et al. Positronium annihilation data and actual free-volume distribution in polymers. High Energy Chem 41, 370–380 (2007). https://doi.org/10.1134/S0018143907050128

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143907050128

Keywords

Navigation