Skip to main content
Log in

The Tectonic Evolution of the Paleozoic Tannuola Terrane of Tuva in the Mesozoic and Cenozoic: Data of Fission-Track Thermochronology of Apatite

  • Published:
Geotectonics Aims and scope

Abstract

The Tannuola Terrane of Tuva, which is located in the northern part of the Central Asian Fold Belt, formed as a result of island-arc and accretionary-collision events in the Early Paleozoic. Further tectonic evolution of the terrane is related to a multiple reactivations of large and mostly normal fault structures. In the middle Paleozoic, the extension of the crystalline basement of the terrane led to the active uplift of mafic melts along the faults to the surface and formation of subalkaline igneous rocks. The Mesozoic and Cenozoic igneous complexes within the Tannuola Terrane are unknown; thus, its tectonic evolution in the Mesozoic and Cenozoic could be considered only after a sedimentary record, which is preserved in the Mesozoic intermountain depressions of Tuva and adjacent Cenozoic Ubsunur Basin. This geological information, however, is insufficient for an exhaustive consideration of the regional tectonic regime taking into account the lack of confirmation of present-day precise methods. The understanding the Mesozoic–Cenozoic tectonic evolution of the Tannuola Terrane is impossible without the analysis of data on low-temperature thermochronology for rocks of the crystalline basement. In our study, fission-track analysis of apatite from 12 samples of the early Paleozoic granitoids of the Tannuola Terrane is conducted in order to recognize the stages of activation and tectonic stability within the absolute time scale. The analysis showed a wide range of ages from 83.4 ± 4.7 (Late Cretaceous) to 35.5 ± 2.2 (late Eocene) Ma at variation of the mean fission-track length from 11.4 to 12.3 µm. The modeling of the thermal evolution of the basement of the Tannuola Terrane, which is based on these data, indicated three stages of tectonic activation of various origins and intensities divided by stages of tectonic quiet periods for the last ~185 million years: (i) ~185–135 Ma (Jurassic–Cretaceous), (ii) ~90–35 Ma (Cretaceous–Paleogene), and (iii) ~15–0 Ma (Neogene–Quaternary).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. G. A. Babin, L. L. Zeifert, A. F. Shchigrev, et al., The 1 : 1 000 000 State Geological Map of the Russian Federation (3rd ed.). Legend of the Altai–Sayan Series of Sheets (Zapsibgeols”emka, Novokuznetsk, 2006) [in Russian].

  2. G. A. Babin and S. P. Shokal’sky, “The main features of the geological structure of the Altai–Syan folded area (tectonic zoning, stratigraphy, magmatism, and geological history),” Geol. Mineral.-Syr’ev. Resursy Sibiri, No. 6, 19–37 (2017).

    Google Scholar 

  3. N. A. Berzin, R. G. Kolman, N. L. Dobretsov, et al., “Geodynamic map of the western part of the Paleoasian Ocean,” Geol. Geofiz., 35 (7–8) 8–28 (1994)

    Google Scholar 

  4. E. I. Berzon and O. N. Petrukhina, “Stratigraphic subdivision of the Jurassic sequence of the Ulug-Khem coal basin (Republic of Tuva),” Regional. Geol. Metallogen., No. 68, 30–41 (2016).

  5. E. I. Berzon and I. V. Smokotina, “New data on litho- and biostratigraphy of the Ulug-khem coal basin (Tuva),” in Proceedings of All-Russian Conference “Yurskaya sistema Rossii: problemy stratigrafii i paleogeografii, September 15—20, 2015, Makhachkala, Ed. by V. A. Zakharov (Alef, Makhachkala, 2015), pp. 34–37 [in Russian].

  6. M. M. Buslov, V. S. Zykin, I. S. Novikov, and D. Delvaux, “Structural and geodynamic features of the formation of the Chuya Intermontane Basin in Cenozoic,” Geol. Geofiz. 40 (12), 1720—1736 (1999).

    Google Scholar 

  7. E. V. Vetrov, A. N. Uvarov, I. A. Vishnevskaya, M. V. Chervyakovskaya, N. I. Vetrova, F. I. Zhimulev, and E. S. Andreeva, “Structure, age, geochemical and isotope-geochemical (Sm/Nd) age of the Serligskaya Formation, Tannu-Ola terrane of Tuva,” Geol. Mineral.-Syr’ev. Resursy Sibiri 41 (1), 81—94 (2020).

    Google Scholar 

  8. E. V. Vetrov, A. I. Chernykh, and G. A. Babin, “Early Paleozoic granitoids magmatism in the East Tannu-Ola Sector of the Tuvinian magmatic belt: Geodynamic setting, age, and metallogeny,” Russ. Geol. Geophys. 60 (5), 492–513 (2019).

    Article  Google Scholar 

  9. I. V. Gordienko, “The volcanic processes of various geodynamic setting of Central Asian Folded Belt,” Litosfera, No. 3, 4–16 (2004).

    Google Scholar 

  10. The 1 : 1 000 000 State Geological Map of the Russian Federation (3rd ed.). Ser. Altai–Sayan. Sheet M-46 (Kyzyl). Explanatory Note (Vseross. Nauchno-Issled. Geol. Inst, Moscow, 2008) [in Russian].

  11. E. V. Devyatkin, Cenozoic Deposits and Neotectonics of the Southeastern Altai, Ed. by K. V. Nikiforov (Nauka, Moscow 1965) [in Russian].

    Google Scholar 

  12. E. V. Devyatkin, “Cenozoic geology of Western Mongolia,” in Mesozoic and Cenozoic geology of Western Mongolia, Ed. by E. V. Devyatkin (Nauka, Moscow, 1970), pp. 44–102 [in Russian].

    Google Scholar 

  13. E. V. Devyatkin, The Cenozoic of Inner Asia (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  14. A. D. Duchkov and L. S. Sokolova, “Heat flow in the Central Altai–Sayan Region,” Geol. Geofiz. 8, 114–123 (1974).

    Google Scholar 

  15. N. D. Zhalkovskii, O. A. Kuchai, and V. I. Muchnaya, “Seismicity and some characteristics of stress state of the crust in the Altai–Sayan region,” Geol. Geofiz. 362 (10), 20–30 (1995).

    Google Scholar 

  16. S. V. Ivantsov, Candidate’s Dissertation in Geology and Mineralogy (Tomsk. Gos. Univ., Tomsk, 2009).

  17. A. B. Kuz’michev, Tectonic History of the Tuva–Mongolian Massif: Early Baikalian, Late Baikalian, and Early Caledonian Stages (PROBEL-2000, Moscow, 2004) [in Russian].

  18. N. I. Lebedev, Coals of Tuva: State and Perspectives of Development of a Raw-Material Base (TuvIKOPR SO RAN, Kyzyl, 2007) [in Russian].

  19. A. A. Mongush, V. I. Lebedev, V. P. Kovach, et al., “The tectonomagmatic evolution of structure-lithologic complexes in the Tannu-Ola zone, Tuva, in the Late Vendian–Early Cambrian (from geochemical, Nd isotope, and geochronological data),” Russ. Geol. Geophys. 52 (5), 503–516 (2011).

    Article  Google Scholar 

  20. A. N. Ovsyuchenko and Yu. V. Butanaev, “Seismic history of the Altai–Sayan region and the 2011–2012 earthquakes in Tuva” Nov. Issled. Tuvy, No. 1, 162–180 (2017).

    Google Scholar 

  21. S. M. Popova, “Freshwater mollusks from the Neogene sequence of the Ubsunur depression (Tuva ASSR),” in Mesozoic and Cenozoic Lakes of Siberia, Ed. by A. P. Zhuze and N. A. Florensov (Nauka, Moscow, 1968), pp. 232–251 [in Russian].

    Google Scholar 

  22. S. N. Rudnev, Early Paleozoic Granitoid Magmatism of the Altai–Sayan Folded Area and Ozernaya Zone of Western Mongolia, Ed. by G. V. Polyakov (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2013) [in Russian].

    Google Scholar 

  23. A. M. Sugorakova and A. V. Nikiforov, “Mafic magmatism in Early Devonian Tuvinian rift trough,” Geosfer. Issled., No. 1, 85–103 (2016).

  24. Yu. V. Teslenko, Stratigraphy and Flora of the Jurassic Deposits in Western and Southern Siberia and Tuva (Nedra, Moscow, 1970) [in Russian].

    Google Scholar 

  25. D. N. Shapovalov, The 1 : 200 000 State Geological Map of the Russian Federation (2nd ed.), Upper Yenisei Ser. (Tyvinsk. Fil. FBU “TFGI po Sibir. Federal. Okrugu,” Kyzyl, 2001, no. 2401).

  26. V. V. Yarmolyuk, M. I. Kuz’min, and A. A. Vorontsov, “West Pacific-type convergent boundaries and their role in the formation of the Central Asian Fold Belt,” Russ. Geol. Geophys. 54 (12), 1427–1441 (2013).

    Article  Google Scholar 

  27. W. D. Carlson, R. A. Donelick, and R. A. Ketcham, “Variability of apatite fission-track annealing kinetics: I. Experimental results,” Am. Mineralogist 84, 1213–1223 (1999).

    Article  Google Scholar 

  28. K. M. Cohen, S. C. Finney, P. L. Gibbard, and J.-X. Fan, “The ICS International Chronostratigraphic Chart,” Episodes 36 (3), 199–204 (2013).

    Article  Google Scholar 

  29. J. de Grave and M. M. Buslov, P. Van den haute, J. Metcalf, B. Dehandschutter, and M. O. McWilliams, “Multi-method chronometry of the Teletskoye graben and its basement, Siberian Altai Mountains: New insights on its thermo-tectonic evolution,” Spec. Publ.—Geol. Soc. London 324, 237–259 (2009).

    Article  Google Scholar 

  30. J. de Grave, E. de Pelsmaeker, F. I. Zhimulev, S. Glorie, and M. M. Buslov, and P. Van den haute, “Meso-Cenozoic building of the northern Central Asian Orogenic Belt: Thermotectonic history of the Tuva region,” Tectonophysics 621, 44–59 (2014).

    Article  Google Scholar 

  31. J. de Grave, S. Glorie, F. I. Zhimulev, M. M. Buslov, M. Elburg, F. Vanhaecke, and P. Van den haute,” Emplacement and exhumation of the Kuznetsk–Alatau basement (Siberia): Implications for the tectonic evolution of the Central Asian Orogenic Belt and sediment supply to the Kuznetsk, Minusa andWest Siberian Basins,” Terra Nova 23, 248–256 (2011).

    Article  Google Scholar 

  32. J. de Grave and P. Van den haute, “Denudation and cooling of the Lake Teletskoye region in the Altai Mountains (South Siberia) as revealed by apatite fission-track thermochronology,” Tectonophysics 349, 145–159 (2002).

    Article  Google Scholar 

  33. R. A. Donelick, “Crystallographic orientation dependence of mean etchable fission track length in apatite: An empirical model and experimental observations,” Am. Mineralogist 76, 83–91 (1991).

    Google Scholar 

  34. K. Gallagher, “Transdimensional inverse thermal history modeling for quantitative thermochronology,” J. Geophys. Res. Space Phys. 117, 1–16 (2012).

    Google Scholar 

  35. A. E. Gelfand and A. F. M. Smith, “Sampling-based approaches to calculating marginal densities,” J. Am. Stat. Assoc. 85 (410), 398–409 (1990).

    Article  Google Scholar 

  36. S. Glorie and J. de Grave, “Exhuming the Meso-Cenozoic Kyrgyz Tian Shan and Siberian Altai–Sayan: a review based on low-temperature thermochronology,” Geosci. Front. 7, 155–170 (2016).

    Article  Google Scholar 

  37. S. Glorie, J. de Grave, M. Buslov, M. Elburg, D. Stockli, A. Gerdes, and P. Haute, “Multi-method chronometric constraints on the evolution of the Northern Kyrgyz Tien Shan granitoids (Central Asian Orogenic Belt): From emplacement to exhumation,” J. Asian Earth Sci. 38, 131–146 (2010).

    Article  Google Scholar 

  38. S. Glorie, J. de Grave, F. I. Zhimulev, M. M. Buslov, M. A. Elburg, and P. Van den haute, “Structural control on Meso-Cenozoic tectonic reactivation and denudation in the Siberian Altai: Insights from multi-method thermochronometry,” Tectonophysics 544, 75–92 (2012).

    Article  Google Scholar 

  39. P. F. Green, I. R. Duddyi, A. J. W. Gleadow, P. R. Tingate, and G. M. Laslett, “Thermal annealing of fission tracks in apatite 1. A qualitative description,” Chem. Geol. 59, 237–253 (1986).

    Article  Google Scholar 

  40. B. U. Haq, J. Hardenbol, and P. R. Vail, “Chronology of fluctuating sea levels since the Triassic,” Science 235, 1156–1167 (1987).

    Article  Google Scholar 

  41. M. Jolivet, T. de Boisgrolier, C. Petit, M. Fournier, V. A. Sankov, J. C. Ringenbach, L. Byzov, A. I. Miroshnichenko, S. N. Kovalenko, and S. V. Anisimova, “How old is the Baikal Rift Zone? Insight from apatite fission track thermochronology,” Tectonics 28, p. TC3008 (2009).

    Article  Google Scholar 

  42. R. D. Muller, M. Sdrolias, C. Gaina, and W. R. Roest, “Age, spreading rates, and spreading asymmetry of the world’s ocean crust,” Geochem., Geophys., Geosyst. 9, p. Q04006 (2008).

    Article  Google Scholar 

  43. R. A. Ketcham, A. Carter, R. A. Donelick, J. Barbarand, A. J. Hurford, “Improved modeling of fission-track annealing in apatite,” Am. Mineralogist 92, 799–810 (2007).

    Article  Google Scholar 

  44. R. A. Ketcham, R. A. Donelick, and W. D. Carlson, “Variability of apatite fission-track anneling kinetics: III. Extrapolation to geological time scales,” Am. Mineralogist 84, 1235–1255 (1999).

    Article  Google Scholar 

  45. M. A. Kominz, “Oceanic ridge volume and sea-level change an error analysis,” in Interregional Unconformities and Hydrocarbon Accumulation, Ed. by J. S. Schlee (Am. Assoc. Petrol. Geol., Tulsa, OK, USA, 1984. Vol. 36), pp. 109–127.

    Google Scholar 

  46. V. A. Kravchinsky, J. P. Cogne, W. P. Harbert, and M. I. Kuzmin, “Evolution of the Mongol–Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol–Okhotsk suture zone, Siberia,” Geophys. J. Int. 148, 34–57 (2002).

    Article  Google Scholar 

  47. A. J. Parsons, K. Hosseini, R. M. Palin, and K. Karin Sigloch, “Geological, geophysical and plate kinematic constraints for models of the India–Asia collision and the post-Triassic central Tethys Ocean,” Earth-Sci. Rev. 208, p.103084 (2020).

    Article  Google Scholar 

  48. W. C. Pitman, “Relationship between eustacy and stratigraphic sequences of passive margins,” GSA Bull. 89, 1389–1403 (1978).

    Article  Google Scholar 

  49. A. M. C. Sengör, B. A. Natal’in, and V. S. Burtman, “Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia,” Nature 364 (6435), 299–307 (1993).

    Article  Google Scholar 

  50. G. Van Ranst, A. P. Carlos Pedrosa-Soares, T. Novo, P. Vermeesch, and J. De Grave, “New insights from low-temperature thermochronology into the tectonic and geomorphologic evolution of the southeast Brazilian highlands and passive margin,” Geosci. Front. 11, 303–324 (2020).

    Article  Google Scholar 

  51. R. Vassallo, M. Jolivet, J. -F. Ritz, R. Braucher, C. Larroque, C. Sue, M. Todbileg, and D. Javkhlanbold, “Uplift age and rates of the Gurvan Bogd system (Gobi-Altay) by apatite fission track analysis,” Earth Planet. Sci. Lett. 259, 333–346 (2007).

    Article  Google Scholar 

  52. E. V. Vetrov, J. De Grave, N. I. Vetrova, F. I. Zhimulev, S. Nachtergaele, G. Van Ranst, and P. I. Mikhailova, “Tectonic history of the South Tannuol Fault Zone (Tuva Region of the Northern Central Asian Orogenic Belt, Russia): Constraints from multi-method geochronology,” Minerals 10, p. 56 (2020). https://doi.org/10.3390/min10010056

    Article  Google Scholar 

  53. G. A. Wagner and P. Van den haute, Fission Track-Dating (Kluwer Acad. Publ., The Netherlands, Dordrecht, 1992).

  54. B. Wang, D. Cluzel, L. Shu, M. Faure, J. Charvet, Y. Chen, S. Meffre, and K. de Jong, “Evolution of calc-alkaline to alkaline magmatism through Carboniferous convergence to Permian transcurrent tectonics, western Chinese Tianshan,” Int. J. Earth Sci. 98, 1275–1298 (2009).

    Article  Google Scholar 

  55. C. Wilhem, B. F. Windley, and G. M. Stampfli, “The Altaids of Central Asia: A tectonic and evolutionary innovative review,” Earth-Sci. Rev. 113, 303–341 (2012).

    Article  Google Scholar 

  56. B. F. Windley, D. Alexeiev, W. Xiao, A. Kröner, and G. Badarch, “Tectonic models for the accretion of the Central Asian Orogenic Belt,” J. Geol. Soc. London 164, 31–47 (2007).

    Article  Google Scholar 

  57. W. Xiao, F. Windley, B. Allen, and C. Han, “Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage,” Gondwana Res. 23, 1316–1341 (2013).

    Article  Google Scholar 

  58. Y.-T. Yang, C. C. Song, and S. He, “Jurassic tectonostratigraphic evolution of the Junggar Basin, NW China: A record of Mesozoic intraplate deformation in Central Asia,” Tectonics 34, 86–115 (2015).

    Article  Google Scholar 

  59. The SRTM Digital Elevation Database. https://cgiarcsi. community/data/srtm-90m-digital-elevation-database-v4-1/.

Download references

ACKNOWLEDGMENTS

We are grateful to Doctor of Geological–Mineralogical Sciences, Prof. A.V. Solov’ev (VNIGNI, Moscow, Russia) and an anonymous reviewer for the comments, which improved the manuscript, and Editor M.N. Shoupletsova (Geological Institute, Russian Academy of Sciences, Moscow, Russia) for thorough editing.

Funding

This work was supported by the grant of the President of the Russian Federation (project no. MK-3510.2022.1.5) and the state assignment for of the Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Vetrov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Melekestseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetrov, E.V., De Grave, J. & Vetrova, N.I. The Tectonic Evolution of the Paleozoic Tannuola Terrane of Tuva in the Mesozoic and Cenozoic: Data of Fission-Track Thermochronology of Apatite. Geotecton. 56, 471–485 (2022). https://doi.org/10.1134/S0016852122040094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852122040094

Keywords:

Navigation