Skip to main content
Log in

Late Precambrian Rhyolite–Granite Volcanic–Plutonic Associations of the Southern Ulutau (Central Kazakhstan)

  • Published:
Geotectonics Aims and scope

Abstract

The results of a study of Late Precambrian effusive and plutonic rocks of the Dyusembai and Aktass volcanic–plutonic associations of the western part of the Southern Ulutau are reported. A U‒Th‒Pb isotope–geochronological study of accessory zircons (SHRIMP II) showed that the formation of rhyolite–granite associations occurred in the second half of the Tonian in the Neoproterozoic (~830 Ma, Dyusembai association, and ~800–790 Ma, Aktass association). The formation of parental melts for effusive and plutonic rocks of both associations occurred via dehydration melting of metatonalite (metagreywacke) formations of the Early Precambrian continental crust in an intraplate environment. The Neoproterozoic evolution of the Southern Ulutau took place in an environment of an active continental margin. The formations of the eastern part of the Southern Ulutau were formed within the ensialic island arc, while the western part, in the area of riftogenic magmatism, upon extension in the rear area. The Tonian magmatism in the Southern Ulutau, as well as in the other terranes of the Ulutau‒Moyunkum Group, indicates their incorporation into the basement of a large volcanic–plutonic belt marking subduction of the oceanic lithosphere beneath the northwestern margin of the Rodinia supercontinent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. D. V. Alekseev, K. E. Degtyarev, A. A. Tretyakov, and N. A. Kanygina, “Early Neoproterozoic (~920 Ma) granite–gneiss of the Junggar Alataw, South Kazakhstan: Age substantiation based on the results of U–Th–Pb (SIMS) dating,” Dokl. Earth Sci. 496 (1), 13–16 (2021).

    Article  Google Scholar 

  2. Geology and Metallogeny of the Karatau. Vol. 1. Geology, Ed. by I. F. Nikitin (Nauka, Alma-ata, 1986) [in Russian].

  3. K. E. Degtyarev, A. A. Tretyakov, E. B. Sal’nikova, and A. B. Kotov, “The Late Cryogenian age of the Kumysty granosyenite complex, Greater Karatau, Southern Kazakhstan,” Dokl. Earth Sci. 484 (2), 120–123 (2019).

    Article  Google Scholar 

  4. N. V. Dmitrieva, E. F. Letnikova, and A. I. Proshenkin, “The formation time of the Zhiida Group of the Maityube Zone (Southern Ulutau, Central Kazakhstan),” in Proceedings of VI Russian Conference on Isotope Geochronology “Isotope Dating of Geological Processes: New Results, Approaches and Perspectives,” June 2–5, 2015, IPGG RAS, St. Petersburg) (Sprnter, St. Petersburg, 2015), pp. 76–77.

  5. P. V. Ermolov, Actual Problems in Isotope Geology and Metallogeny of Kazakhstan (KPU, Karaganda, 2013 [in Russian].

    Google Scholar 

  6. V. S. Mileev and S. B. Rozanov, Precambrian Geology and Tectonics of Central Kazakhstan, Ed. by Yu. A. Zaitsev (Mosk. Gos. Univ., Moscow, 1976) [in Russian].

    Google Scholar 

  7. Yu. K. Sovetov, “Neoproterozoic rifting and evolution of sedimentary basins on the Tarim-type microcontinents: Lesser Karatau, Southern Kazakhstan,” in Proceedings of V All-Russian Lithological Conference “Types of Sedimentogenesis and Lithogenesis in the Earth’s History,” October 14–16, 2008, IGG UBr RAS, Ekaterinburg (Inst. Geol. Geokhim. Ural. Otd. Ross. Akad.Nauk, Ekaterinburg, 2008), pp. 287–289.

  8. Types of Magmas and their Sources in the Earth’s History. Part 1. Magmatism and Geodynamics—Main Factors of the Earth’s Evolution, Ed. by O. A. Bogatikov and V. I. Kovalenko (IGEM Ross. Akad. Nauk, Moscow, 2006) [in Russian].

    Google Scholar 

  9. A. A. Tretyakov, K. E. Degtyarev, E. B. Sal’nikova, K. N. Shatagin, A. B. Kotov, I. V. Anisimova, and Yu. V. Plotkina, “The late Tonian Zhaunkar granite complex of the Ulutau sialic massif, Central Kazakhstan,” Dokl. Earth Sci. 473 (2), 411–415 (2017).

    Article  Google Scholar 

  10. A. A. Tretyakov, K. E. Degtyarev, N. A. Kanygina, and N. K. Danukalov, “The Late Neoproterozoic age of differentiated volcanic complexes of the Ulutau Massif: Results of U–Th–Pb (SIMS) dating,” Dokl. Earth Sci. 494 (1), 670–674 (2020).

    Article  Google Scholar 

  11. A. A. Tretyakov, K. E. Degtyarev, N. A. Kanygina, E. F. Letnikova, F. I. Zhimulev, V. P. Kovach, N. K. Danukalov, and H.-Y. Lee, “Late Precambrian metamorphic complexes of the Ulutau Massif (Central Kazakhstan): Age, composition, and formation settings of protoliths,” Geotectonics 54 (5), 605–627 (2020).

    Article  Google Scholar 

  12. A. A. Tretyakov, K. E. Degtyarev, N. K. Danukalov, and N. A. Kanygina, “Neoproterozoic age of the iron ore volcanogenic-sedimentary series of the Ulutau Terrane (Central Kazakhstan),” Dokl. Earth Sci. 502 (2), 1–6 (2022).

    Article  Google Scholar 

  13. L. I. Filatova, Stratigraphy and Historical-Geological (Formational) Analysis of Metamorphic Formations of the Precambrian of Central Kazakhstan (Nedra, Moscow, 1983) [in Russian].

    Google Scholar 

  14. L. I. Filatova and N. A. Bogatyreva, “On the most ancient Precambrian deposits of the Southern Ulutau,” in Proceedings of Conference on Geology of Central Kazakhstan “Problems of Geology of Central Kazakhstan,” Ed. by A. A. Bogdanov (Mosk. Gos. Univ., Moscow, 1971), vol. 10, pp. 92–106) [in Russian].

  15. V. V. Yarmolyuk and V. I. Kovalenko, Rift Magmatism of Active Continental Margins and its Ore Potential (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  16. B. Bonin, “A-type granites and related rocks: Evolution of a concept, problems and prospects,” Lithos 97, 1–29 (2007).

    Article  Google Scholar 

  17. P. A. Cawood, R. A. Strachan, S. A. Pisarevsky, D. P. Gladkochub, and J. B. Murphy, “Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles,” Earth Planet. Sci. Lett. 449, 118–126 (2016).

    Article  Google Scholar 

  18. J. Chorowicz, “The East African Rift System,” J. Afr. Earth Sci. 43, 379–410 (2005).

    Article  Google Scholar 

  19. J. D. Clemens, J. R. Holloway, and A. J. R. White, “Origin of an A-type granite: Experimental constraints,” Am. Mineralogist 71, 317–324 (1986).

    Google Scholar 

  20. B. J. Collins, S. D. Beams, A. J. R. White, and B. W. Chappel, “Nature and origin of A-type granites with particular reference to southeastern Australia,” Contrib. Mineral. Petrol. 80, 189–200 (1982).

    Article  Google Scholar 

  21. R. A. Creaser and R. C. Price, “A-type granites revisited: Assessment of a residual-source model,” Geology 19, 163–166 (1991).

    Article  Google Scholar 

  22. R. Dall’Agnol and D. C. Oliveira, “Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites,” Lithos 93, 215–233 (2007).

    Article  Google Scholar 

  23. K. Degtyarev, A. Yakubchuk, A. Tretyakov, A. Kotov, and V. Kovach, “Precambrian geology of the Kazakh Uplands and Tien Shan: An overview,” Gondwana Res. 47, 44–75 (2017).

    Article  Google Scholar 

  24. D. J. Depaolo, “Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic,” Nature 291, 193–196 (1981).

    Article  Google Scholar 

  25. G. N. Eby, “The A-type granitoids—a review of their occurrence and chemical characteristics and speculations on their petrogenesis,” Lithos 26, 115–134 (1990).

    Article  Google Scholar 

  26. G. N. Eby, “Chemical subdivision of the A-type granitoids-petrogenetic andtectonic implications,” Geology 20, 641–644 (1992).

    Article  Google Scholar 

  27. D. Evans, “Meso-Neoproterozoic Rodinia supercycle,” in Ancient Supercontinents and the Paleogeography of Earth, Ed. by L. Pesonen, J. Salminen, S.-A. Elming, D. Evans, and T. Veikkolainen (Elsevier, NY, USA. 2022), pp. 549–568.

    Google Scholar 

  28. B. R. Frost, C. G. Barnes, W. J. Collins, R. J. Arculus, D. J. Ellis, and C. D. Frost, “A geochemical classification for granitic rocks,” J. Petrol. 42, 2033–2048 (2001).

    Article  Google Scholar 

  29. C. D. Frost and B. R. Frost, “On ferroan (A-type) granitoids: Their compositional variability and modes of origin,” J. Petrol. 52, 39–53 (2010).

    Article  Google Scholar 

  30. R. Ge, W. Zhu, S. A. Wilde, J. He, X. Cui, X. Wang, and Z. Bihai, “Neoproterozoic to Paleozoic long-lived accretionary orogeny in the northern Tarim Craton,” Tectonics 33, 302–329 (2014).

    Article  Google Scholar 

  31. S. Glorie, J. De Grave, M. M. Buslov, F. I. Zhimulev, D. F. Stockli, V. Y. Batalev, A. Izmer, P. Van den Haute, F. Vanhaecke, and M. A. Elburg, Tectonic history of the Kyrgyz South Tianshan (Atbashi–Inylchek) suture zone: The role of inherited structures during deformation-Propagation, Tectonics 30 (6), p. TC6016 (2011).

    Article  Google Scholar 

  32. S. J. Goldstein and S. B. Jacobsen, “Nd and Sr isotopic systematics of river water suspended material implications for crystal evolution,” Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Article  Google Scholar 

  33. J. Y. He, B. Xu, and D. Li, “Newly discovered early Neoproterozoic (ca. 900 Ma) andesitic rocks in the northwestern Tarim Craton: Implications for the reconstruction of the Rodinia supercontinent,” Precambrian Res. 325, 55–68 (2019).

    Article  Google Scholar 

  34. A. Q. Hu, G. J. Wei, B. M. Jahn, J. B. Zhang, W. F. Deng, and L. L. Chen, “Formation of the 0.9 Ga Neoproterozoic granitoids in the Tianshan Orogen, NW China: Constraints from the SHRIMP zircon age determination and its tectonic significance,” Geochimica 9, 197–212 (2010) [in Chinese with English abstr.].

    Google Scholar 

  35. S. B. Jacobsen and G. J. Wasserburg, “Sm–Nd evolution of chondrites and achondrites,” Earth Planet. Sci. Lett. 67, 137–150 (1984).

    Article  Google Scholar 

  36. B. M. Jahn, F. Y. Wu, and B. Chen, “Massive granitoid generation in Central Asia: Nd isotopic evidence and implication for continental growth in the Phanerozoic,” Episodes 43, 82–92 (2000).

    Article  Google Scholar 

  37. A. Kröner, D. V. Alexeiev, E. Hegner, Y. Rojas-Agramonte, M. Corsini, Y. Chao, J. Wong, B. F. Windley, D. Liu, and A. A. Tretyakov, “Zircon and muscovite ages, geochemistry and Nd–Hf isotopes for the Aktyuz metamorphic terrane: evidence for an Early Ordovician collision belt in the northern Tianshan of Kyrgyzstan,” Gondwana Res. 21, 901–927 (2012).

    Article  Google Scholar 

  38. M. J. Le Bas, R. W. Le Maitre, A. Streckeisen, and B. Zanettin, “A chemical classification of volcanic rocks based on the total alkali-silica diagram,” J. Petrol. 27, 745–750 (1986).

    Article  Google Scholar 

  39. N. M. Levashova, J. G. Meert, A. S. Gibsher, W. C. Grice, and M. L. Bazhenov, “The origin of microcontinents in the Central Asian Orogenic Belt: Constraints from paleomagnetism and geochronology,” Precambrian Res. 185, 37–54 (2011).

    Article  Google Scholar 

  40. Z. X. Li, S. V. Bogdanova, A. S. Collins, A. Davidson, B. de Waele, R. E. Ernst, I. C. W. Fitzsimons, R. A. Fuck, D. P. Gladkochub, J. Jacobs, K. E. Karlstrom, S. Lu, L. M. Natapov, V. Pease, S. A. Pisarevsky, K. Thrane, and V. Vernikovsky, “Assembly, configuration, and break-up history of Rodinia: a synthesis,” Precambrian Res. 160, 179–210 (2008).

    Article  Google Scholar 

  41. X.-P. Long, C. Yuan, M. Sun, A. Kröner, G.-C. Zhao, S. Wilde, and A.-Q. Hu, Reworking of the Tarim Craton by underplating of mantle plume-derived magmas: Evidence from Neoproterozoic granitoids in the Kuluketage area, NW China,” Precambrian Res. 187, 1–14 (2011).

    Article  Google Scholar 

  42. K. R. Ludwig, ISOPLOT 3.00. A User’s Manual (Berkeley Geochron. Center Spec. Publ., 2003, No. 4).

  43. K. R. Ludwig, SQUID 1.00. A User’s Manual (Berkeley Geochron. Center Spec. Publ., 2000, No. 2).

  44. R. Macdonald, “Nomenclature and petrochemistry of the peralkaline oversaturated extrusive rocks,” Bull. Volcanol. 38, 498–516 (1974).

    Article  Google Scholar 

  45. J. G. Meert, A. S. Gibsher, N. M. Levashova, W. C. Grice, G. D. Kamenov, and A. B. Ryabinin, “Glaciation and ~770 Ma Ediacaran (?) fossils from the lesser Karatau microcontinent, Kazakhstan,” Gondwana Res. 19, 867–880 (2011).

    Article  Google Scholar 

  46. A. S. Merdith, A. S. Collins, S. E. Williams, S. Pisarevsky, J. D. Foden, D. B. Archibald, M. L. Blades, B. L. Alessio, S. Armistead, D. Plavsa, C. Clark, and R. D. Müller, “A full-plate global reconstruction of the Neoproterozoic,” Gondwana Res. 50, 84–134 (2017).

    Article  Google Scholar 

  47. C. F. Miller, S. M. McDowell, and R. W. Mapes, “Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance,” Geology 31, 529–532 (2003).

    Article  Google Scholar 

  48. R. D. Nance, J. B. Murphy, and M. Santosh, “The supercontinent cycle: A retrospective essay,” Gondwana Res. 25, 4–29 (2014).

    Article  Google Scholar 

  49. A. E. Patiño Douce, “Generation of metaluminous A‑type granites by lower pressure melting of calc-alkaline granitoids,” Geology 25, 743–746 (1997).

    Article  Google Scholar 

  50. J. A. Pearce, N. W. Harris, and A. G. Tindle, “Trace element discrimination diagrams for the tectonic interpretation of granitic rocks,” J. Petrol. 25, 956–983 (1984).

    Article  Google Scholar 

  51. A. V. Pilitsyna, A. A. Tretyakov, K. E. Degtyarev, E. B. Salnikova, A. B. Kotov, V. P. Kovach, K.-L. Wang, and V. G. Batanova, “Early Palaeozoic metamorphism of Precambrian crust in the Zheltau terrane (Southern Kazakhstan, Central Asian Orogenic belt): P–T paths, protoliths, zircon dating and tectonic implications,” Lithos 324–325, 115–140 (2019).

    Article  Google Scholar 

  52. Precambrian Geology of China, Ed. by M. Zhai (Springer, NY, USA, 2015).

    Google Scholar 

  53. R. Ren, S. W. Guan, S. C. Zhang, L. Wu, and H. Y. Zhang, “How did the peripheral subduction drive the Rodinia breakup: Constraints from the Neoproterozoic tectonic process in the northern Tarim Craton,” Precambrian Res. 339, 1–17 (2020).

    Article  Google Scholar 

  54. J. J. W. Rogers and M. Santosh, “Configuration of Columbia, Mesoproterozoic supercontinent,” Gondwana Res. 5, 5–22 (2002).

    Article  Google Scholar 

  55. V. A. Ramos, “Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle,” in Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision, Ed. by S. M. Kay, V. A. Ramos, and W. R. Dickinson, (GSA Mem., 2009, Vol. 204), pp. 31–65.

    Google Scholar 

  56. Y. Rojas-Agramonte, A. Kroner, D. V. Alexeiev, T. Jeffreys, A. K. Khudoley, J. Wong, H. Geng, L. Shug, S. A. Semiletkin, A. V. Mikolaichuk, V. V. Kiselev, J. Yang, and R. Seltmann, “Detrital and igneous zircon ages for supracrustal rocks of the Kyrgyz Tianshan and palaeogeographic implications,” Gondwana Res. 26, 957–974 (2014).

    Article  Google Scholar 

  57. T. O. Rooney, “The Cenozoic magmatism of East Africa. Part V: Magma sources and processes in the East African Rift,” Lithos 360–361, 105296 (2020).

    Article  Google Scholar 

  58. L.-S. Shu, X. L. Deng, W.-B. Zhu, D.-S. Ma, and W.‑J. Xiao, “Precambrian tectonic evolution of the Tarim Block, NW China: New geochronological insights from the Quruqtagh domain,” Precambrian Res. 42, 774–790 (2011).

    Google Scholar 

  59. K. P. Skjerlie and A. D. Johnston, “Fluid-absent melting behaviour of a F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of anorogenic granites,” J. Petrol. 34, 785–815 (1993).

    Article  Google Scholar 

  60. A. V. Skoblenko (Pilitsyna), K. E. Degtyarev, N. A. Kanygina, A. A. Tretyakov, S. Yu. Skuzovatov, K.‑N. Pang, and H.-Y. Lee, “Precambrian and Early Palaeozoic metamorphic complexes in the SW part of the Central Asian Orogenic Belt: Ages, compositions, regional correlations and tectonic affinities,” Gondwana Res. 105, 117–142 (2022).

    Article  Google Scholar 

  61. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry (Spec. Publ.—Geol. Soc. London, 1989, Vol. 42), pp. 313–345.

    Google Scholar 

  62. B. Terbishalieva, M. J. Timmerman, A. Mikolaichuk, U. Altenberger, J. Sláma, A. M. Schleicher, M. Sudo, E. R. Sobel, and S. B. Cichy, “Calc-alkaline volcanic rocks and zircon ages of the late Tonian: early Cryogenian arc-related Big Naryn Complex in the Eastern Djetim-Too Range, Middle Tianshan block, Kyrgyzstan,” Int. J. Earth Sci. 110, 353–375 (2021).

    Article  Google Scholar 

  63. A. A. Tretyakov, A. V. Pilitsyna, K. E. Degtyarev, N. A. Kanygina, E. B. Salnikova, V. P. Kovach, H.‑Y. Lee, K.-L. Wang, V. G. Batanova, and E. V. Kovalchuk, “Neoproterozoic granitoid magmatism and granulite metamorphism in the Chu-Kendyktas terrane (Southern Kazakhstan, Central Asian orogenic belt): Zircon dating, Nd isotopy and tectono-magmatic evolution,” Precambrian Res. 332, p. 105397 (2019).

    Article  Google Scholar 

  64. S. P. Turner, J. D. Foden, and R. S. Morrison, “Derivation of A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia,” Lithos 28, 151–179 (1992).

    Article  Google Scholar 

  65. D. Vielzeuf and J. M. Montel, “Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationship,” Contrib. Mineral. Petrol. 117, 375–393 (1994).

    Article  Google Scholar 

  66. C. Wang, J. H. Zhang, M. Li, R. S. Li, and Y. Peng, “Generation of ca. 900–870Ma bimodal rifting volcanism along the southwestern margin of the Tarim Craton and its implications for the Tarim–North China connection in the Early Neoproterozoic,” J. Asian Earth Sci. 113, 610–625 (2015).

    Article  Google Scholar 

  67. B. Wang, H. Liu, L. Shu, B. -M. Jahn, S. Chung, Y. Zha, and D. Liu, “Early Neoproterozoic crustal evolution in Northern Yili Block: insights from migmatite, orthogneiss and leucogranite of the Wenquan metamorphic complex in the NW Chinese Tianshan,” Precambrian Res. 242, 58–81 (2014).

    Article  Google Scholar 

  68. J. B. Whalen, K. L. Currie, and B. W. Chappell, “A‑type granites-geochemical char-acteristics, discrimination and petrogenesis,” Contrib. Mineral. Petrol. 95, 407–419 (1987).

    Article  Google Scholar 

  69. E. B. Watson and T. M. Harrison, “Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types,” Earth Planet. Sci. Lett. 64, 295–304 (1983).

    Article  Google Scholar 

  70. I. S. Whilliams, “U–Th–Pb Geochronology by ion microprobe,” Rev. Econom. Geol. 7, 1–35 (1998).

    Google Scholar 

  71. B. Xu, P. Jian, H. Zheng, H. Zou, L. Zhang, and D. Liu, “U–Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: Implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations,” Precambrian Res. 136, 107–123 (2005).

    Article  Google Scholar 

  72. C.-L. Zhang, X.-H. Li, Z.-X. Li, S.-N. Lu, H.-M. Ye, and H.-M. Li, “Neoproterozoic ultramafic-carbonatite complex, granitoids in Quruqtagh of northeastern Tarim Block, western China: Geochronology, geochemistry and tectonic implications,” Precambrian Res. 152, 149–169 (2007).

    Article  Google Scholar 

  73. C.-L. Zhang, Z.-X. Li, X.-H. Li, and H.-M. Ye, “Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China: Age, geochemistry, petrogenesis and tectonic implications,” J. Asian Earth Sci. 35, 167–179.

  74. C. L. Zhang, H. B. Zou, H. K. Li, and H. Y. Wang, “Multiple phases of Neoproterozoic ultramafic-mafic complex in Kuruqtagh, northern margin of Tarim: Interaction between plate subduction and mantle plume?” Precambrian Res. 222–223, 488–502 (2012).

    Article  Google Scholar 

  75. C.-L. Zhang, H.-K. Li, M. Santosh, Z.-X. Li, H.‑B. Zou, H. Wang, and H. Ye, “Precambrian evolution and cratonization of the Tarim Block, NW China: Petrology, geochemistry, Nd-isotopes and U–Pb zircon geochronology from Archaean gabbro-TTG–potassic granite suite and Paleoproterozoic metamorphic belt,” J. Asian Earth Sci. 47, 5–20 (2012).

    Article  Google Scholar 

  76. C. L. Zhang, X. T. Ye, H. B. Zou, and X. Y. Chen, “Neoproterozoic sedimentary basin evolution in southwestern Tarim, NW China: New evidence from field observations, detrital zircon U–Pb ages and Hf isotope compositions,” Precambrian Res. 280, 31–45 (2016).

    Article  Google Scholar 

  77. C. L. Zhang, X. T. Ye, R. E. Ernst, Y. Zhong, J. Zhang, H. K. Li, and X. P. Long, “Revisiting the Precambrian evolution of the Southwestern Tarim terrane: Implications for its role in Precambrian supercontinents,” Precambrian Res. 324, 18–31 (2019).

    Article  Google Scholar 

  78. G. C. Zhao, Y. J. Wang, B. C. Huang, Y. P. Dong, S. Z. Li, G. W. Zhang, and S. Yu, “Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea,” Earth Sci. Rev. 186, 262–286 (2018).

    Article  Google Scholar 

  79. B. Zheng, W. Zhu, R. Ge, H. Wu, J. He, and Y. Lu, “Proterozoic tectonic evolution of the Tarim Craton: New insights from detrital zircon U–Pb and Lu–Hf isotopes of metasediments in the Kuruktag area,” Precambrian Res. 346, p. 105788 (2020).

    Article  Google Scholar 

  80. T. Zhou, R. Ge, W. Zhu, and H. Wu, “Is there a Grenvillian orogen in the southwestern Tarim Craton?” Precambrian Res. 354, 409–424 (2021).

    Article  Google Scholar 

  81. W. Zhu, B. Zheng, L. Shu, D. Ma, H. Wu, Y. Li, W. Huang, and J. Yu, “Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane, northwestern Tarim, China: Insights from LA-ICP-MS zircon U–Pb ages and geochemical data,” Precambrian Res. 185, 215–230 (2011).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the reviewers, Academician V.V. Yarmolyuk (Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Moscow, Russia), Dr. T.V. Donskaya (Institute of the Earth’s Crust, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia) for comments that allowed us to improve the manuscript, and the editor M.N. Shoupletsova (Geological Institute, Russian Academy of Sciences, Moscow, Russia) for thorough editing.

Funding

The study was supported by the Russian Science Foundation, project no. 22-17-00069, and was performed as a part of the State Task of the Geological Institute, Russian Academy of Sciences. Analytical study was supported by the Russian Foundation for Basic Research, project no. 20-05-00108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tretyakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Bobrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tretyakov, A.A., Degtyarev, K.E., Kanygina, N.A. et al. Late Precambrian Rhyolite–Granite Volcanic–Plutonic Associations of the Southern Ulutau (Central Kazakhstan). Geotecton. 56, 405–434 (2022). https://doi.org/10.1134/S0016852122040082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852122040082

Keywords:

Navigation