Skip to main content
Log in

The Nature and Evolution of the Ninetyeast Ridge: A Key Tectonic and Magmatic Feature of the East Indian Ocean

  • Published:
Geotectonics Aims and scope

Abstract

The Ninetyeast Ridge is the longest linear intraplate rise in the World Ocean and the main tectonic and magmatic feature in the East Indian Ocean. Ideas about the nature and evolution of this unique aseismic ridge have changed over the more than 50 years of its research as new geological and geophysical data have been obtained. Our analytical review of available publications has shown that the current dominant hypothesis is the “hot spot trace,” which assumes the formation of the Ninetyeast Ridge under the influence of the Kerguelen mantle plume near the giant transform fault. Geophysical data indicate strong lateral and deep heterogeneity of the Ninetyeast Ridge, which is roughly divided into three segments based on its morphology, style of tectonic deformation of its sedimentary cover, and the deep structure of the crust beneath it: northern, central, and southern. Their different structures are explained by the formation at different stages of three or four phases of tectonic evolution of the East Indian Ocean, when the Kerguelen hotspot was in a different position relative to the Wharton spreading ridge. The complex structure of the central segment with low elastic thickness assumes its emplacement in the hot spreading center. The northern and southern segments with higher mechanical strength of the lithosphere were formed by intraplate volcanism on the older and cooled crust of the Indian Plate. The geochemical composition of the Ninetyeast Ridge tholeiites, enriched to varying degrees by incoherent elements, evidences its formation under the influence of the Kerguelen plume. Primary melts of magmas are of low-Ti and Si-enriched tholeiites, which were formed by high degrees of melting of the mantle protolith. That indicates particularly strong plume influence 70–50 Ma ago, which corresponds to the most complex and anomalous central segment of the Ninetyeast Ridge. The absence of typically depleted magmas and enrichment of melts in an admixture of sources with different isotopic characteristics indicates that asthenospheric magmas did not reach far up, but they were ubiquitously mixed with magmas of the Kerguelen plume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. V. Artamonov and B. P. Zolotarev, “Tectonics and magmatism of intraplate oceanic rises and the hot-spot hypothesis,” Geotectonics 42 (1), 64–79 (2008).

    Article  Google Scholar 

  2. P. L. Bezrukov and V. F. Kanaev, “The main features of the bottom structure of the Northeastern Indian Ocean,” Dokl. Akad. Nauk SSSR 153 (4), 926–929 (1963).

    Google Scholar 

  3. A. A. Bulychev, D. A. Gilod, and E. P. Dubinin, “Heterogeneous structure of the lithosphere in the eastern part of the Indian Ocean based on the results from the analysis of the gravity and anomalous magnetic fields,” Vestn. KRAUNTs. Nauki Zemle, No. 2, Iss. 24, 41–54 (2014).

    Google Scholar 

  4. I. A. Veklich, A. N. Ivanenko, and O. V. Levchenko, “Anomalous magnetic field ΔTa in the equatorial Indian Ocean (survey at polygons),” Vestn. KRAUNTs. Nauki Zemle, No. 1, Iss. 45, 17–37 (2020).

    Google Scholar 

  5. E. V. Verzhbitskii and M. V. Kononov, Genesis of the Lithosphere in the Northern Part of the World Ocean (Nauchn. Mir, Moscow, 2010) [in Russian].

    Google Scholar 

  6. Geology and Geophysics of the Bottom of the Eastern Part of the Indian Ocean, Ed. by P. L. Bezrukov and Yu. P. Neprochnov (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  7. Geological–Geophysical Atlas of the Indian Ocean (GUGK, Akad. Nauk SSSR, Moscow, 1975) [in Russian].

  8. E. P. Dubinin, Yu. I. Galushkin, A. L. Grokholsky, A. V. Kokhan, and N. M. Sushchevskaya, “Hot and cold zones of the southeast Indian Ridge and their influence on the peculiarities of its structure and magmatism (numerical and physical modelling),” Geotectonics 51 (3), 209–229 (2017).

    Article  Google Scholar 

  9. V. K. Illarionov, A. N. Boiko, and A.Yu. Borisova, “A new model of the Ninetyeast Indian Ridge formation, Indian Ocean,” Geofiz. Protsessy Biosfera 18 (4), 225–240 (2019).

    Google Scholar 

  10. V. F. Kanaev, The Bottom Topography of the Indian Ocean (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  11. G. L. Kashintsev, “Aspects of magmatism of the Ninetyeast Ridge,” Oceanology 41 (3), 413–418 (2001).

    Google Scholar 

  12. G. L. Kashintsev and G. B. Rudnik, “New data on basalts of the Ninetyeast Ridge,” Izv. Akad. Nauk SSSR. Ser. Geol., No. 6, 5–12 (1975).

  13. G. L. Kashintsev, G. B. Rudnik, and V. P. Safonov, “Edaphogenetic and tectonic breccias of the East Indian Trench,” Okeanologiya 29 (1), 102–108 (1979).

    Google Scholar 

  14. G. L. Kashintsev, G. B. Rudnik, and S. F. Sobolev, Magmatic and metamorphic rocks, in Geology and Geophysics of the Bottom of the Eastern Part of the Indian Ocean, Ed. by P. L. Bezrukov and Yu. P. Neprochnov (Nauka, Moscow, 1981), pp. 166–195.

    Google Scholar 

  15. G. L. Kashintsev, Yu. P. Neprochnov, and B. N. Grin’ko “The origin and evolution of the Ninetyeast Ridge,” Oceanology 40 (6), 850–855 (2000).

    Google Scholar 

  16. O. V. Levchenko, W. W. Sager, F. A. Frey, et al., “New geological–geophysical data on the structure of the Ninetyeast ridge,” Dokl. Earth Sci. 434 (1) 1208–1213 (2010).

    Article  Google Scholar 

  17. O. V. Levchenko, I. M. Sborshchikov, and Yu. G. Marinova, “Tectonics of the Ninety-East Ridge,” Oceanology 54 231–244 (2014).

    Article  Google Scholar 

  18. O. V. Levchenko, R. A. Anan’ev, I. A. Veklich, et al., “Complex investigation of the seamount at the bottom of the northern part of the Ninety-East Ridge,” Vestn. KRAUNTs. Nauki Zemle, No. 3, Iss. 39, 90–104 (2018).

    Google Scholar 

  19. G. L. Leitchenkov, E. P. Dubinin, A. L. Grokholsky, and G. D. Agranov, “Formation and evolution of microcontinents of the Kerguelen Plateau, Southern Indian Ocean,” Geotectonics 52 5, 3–21 (2018).

    Article  Google Scholar 

  20. Yu. G. Marinova, “Seismostratigraphic analysis of the sedimentary cover of the northern part of the Ninety-East Ridge,” Byull. Mosk. O–va Ispyt. Prir., Otd. Geol. 86 (5), 21–29 (2010).

    Google Scholar 

  21. Yu. G. Marinova, Stratigraphic hiatuses in the sedimentary cover of the Ninetyeast Ridge, Stratigr. Geol. Correl. 26 (5), 571–583 (2018).

  22. Yu. P. Neprochnov, L. R. Merklin, A. A. Shreider, et al., “Structure of the of the Ninetyeast Ridge based on the integrated geophysics,” Oceanology 19 (4), 644–657 (1979).

    Google Scholar 

  23. Yu. P. Neprochnov, B. N. Grin’ko, and O. Yu. Ganzha, “Crustal structure of the Ninetyeast Ridge,” Oceanology 40 (1), 79–90 (2000).

    Google Scholar 

  24. A. I. Pilipenko, “Seismostratigraphic analysis of the sedimentary cover of the Ninetyeast Ridge at the 10o–18o S latitude,” Stratigr. Geol. Korrel. 1 (4), 93–100 (1993).

    Google Scholar 

  25. A. I. Pilipenko, “Fault zones of the Ninetyeast Ridge (Indian Ocean),” Geotektonika, No. 6, 17–28 (1996).

    Google Scholar 

  26. A. A. Popov, A. A. Popov, A. V. Petrov, and Yu. V. Kiktev, “Seismic models of the northern part of East Indian Ridge and adjacent basins,” Okeanologiya 25 (6), 983–992 (1985).

    Google Scholar 

  27. Yu. M. Pushcharovsky, “Tectonics of the Indian Ocean, Geotektonika,” 29 4, 73–91 (1995).

    Google Scholar 

  28. Yu. M. Pushcharovsky, “The first-order linear tectonovolcanic ridges in oceans,” Geotectonics, 45 2, 101–112 (2011).

    Article  Google Scholar 

  29. Yu. M. Pushcharovsky and P. L. Bezrukov, “On the tectonics of the eastern part of the Indian Ocean,” Geotektonika, No. 6, 3–19 (1973). [in Russian]

    Google Scholar 

  30. V. V. Reverdatto, V. V. Yeremeyev, A. Ya. Il’yev, et al., “Discovery of rhyolites and trachytes and the geological situation in the northern part of the Ninetyeast Ridge,” Dokl. Akad. Nauk SSSR 280 (4), 960–963 (1985).

    Google Scholar 

  31. S. A. Silant’ev, Basement rocks of the southeastern part of the Indian Ocean, In: Geological-Geophysical Study of Aseismic Rises of the Ocean Floor, Ed. by G. B. Udintsev (Nauka, Moscow, 1985), pp. 93–104.

    Google Scholar 

  32. S. A. Silant’ev, R. Magakyan, N. M. Sushchevskaya, et al., “New data on the material composition of rocks of the Ninetyeast Ridge (Indian Ocean) and their significance for interpretation of its tectonic evolution,” Geotectonica, No. 4, 68–85 (1990).

    Google Scholar 

  33. N. M. Sushchevskaya, L. V. Dmitriev, and A. V. Sobolev, “Petrochemical criteria of classification of quenched glasses of oceanic tholeiites,” Dokl. Akad. Nauk SSSR 268 (6), 953–961 (1983).

    Google Scholar 

  34. N. M. Sushchevskaya, V. V. Nikulin, L. V. Ishchenko, et al., “The inhomogeneity of Indian Ocean tholeiitic magmatism based on the petrology and geochemistry of chilled glasses,” Geochem. Int. 28 (11), 10–23 (1991).

    Google Scholar 

  35. N. M. Sushchevskaya, B. V. Belyatsky, T. I. Tsekhonya, et al., “Petrology and geochemistry of basalts from the eastern Indian Ocean: Implications for its early evolution,” Petrology 6, 480–505 (1998).

    Google Scholar 

  36. N. M. Sushchevskaya, E. V. Koptev-Dvornikov, A. A. Peyve, et al., “Peculiarities of crystallization and geochemistry of tholeiitic magmas from the western termination of the Africa–Antarctic Ridge (Shpiss Ridge) in the Boivet triple junction,” Ross. Zh. Nauk Zemle 1 (3), 221–250 (1999).

    Google Scholar 

  37. N. M. Sushchevskaya, O. V. Levchenko, E. P. Dubinin, and B. V. Belyatsky, “Ninetyeast Ridge: magmatism and geodynamics,” Geochem. Int. 54 (3), 237–256 (2016).

    Article  Google Scholar 

  38. N. M. Sushchevskaya, B. V. Belyatsky, E. P. Dubinin, and O. V. Levchenko, “Evolution of the Kerguelen plume and its impact upon the continental and oceanic magmatism of East Antarctica,” Geochem. Int. 55 (9), 775–791 (2017).

    Article  Google Scholar 

  39. P. M. Sychev, V. M. Vorob’ev, L. M. Lyutaya, et al., “Folded deformations of the sedimentary in the southeastern part of the Bengal Bay,” Tikhookean. Geol., No. 1, 25–36 (1987).

  40. B. D. Uglov, Yu. G. Zorina, and M. K. Kaban, Geological-Geophysical Atlas of the Angola–Brazilian and Mascarene–Australian Transocean Geotransects (Tsentral Nauchno-Issled. Geol. Inst. Tsvetn. Blagorodn. Metallov, Moscow, 1999).

    Google Scholar 

  41. A. A. Shreider, Geomagnetic Studies of the Indian Ocean (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  42. P. Armienti and P. Longo, “Three-dimensional representation of geochemical data from a multidimensional compositional space,” Int. J. Geosci. 2, 231–239 (2011).

    Article  Google Scholar 

  43. K. Bowin, “Origin of the Ninetyeast Ridge from the Studies Near Equator,” J. Geophys. Res. 78 (26), 6029–6043 (1973).

    Article  Google Scholar 

  44. S. Chatterjee, A. Goswam, and C. R. Scotese, “The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian Plate during its northward flight from Gondwana to Asia,” Gondwana Res. 23, 238–267 (2013).

    Article  Google Scholar 

  45. M. F. Coffin, M. Pringle, R. Duncan, et al., “Kerguelen hotspot magma output since 130 Ma,” J. Petrol. 43, 1121–1137 (2002).

    Article  Google Scholar 

  46. J. R. Curray, F. J. Emmel, D. G. More, and R. W. Raitt, “Structure, tectonics and geological history of the Northeastern Indian Ocean,” In: The Ocean Basins and Margins, Ed by A. E. M. Nairn and F. G. Stehli (Scripps Inst. Oceanogr., San Diego, USA, 1982), Vol. 6, pp. 399–450.

    Google Scholar 

  47. T. A. Davies, B. P. Luyendyk, et al., Initial Reports of the Deep Sea Drilling Project (U.S. Government Print Office, Washington, 1979), vol. 26.

    Google Scholar 

  48. M. Desa, M. V. Ramana, and T. Ramprasad, “Evolution of the Late Cretaceous crust in the equatorial region of the Northern Indian Ocean and its implication in understanding the plate kinematics,” Geophys. Int. J. 177, 1265–1278 (2009).

    Article  Google Scholar 

  49. R. A. Duncan, “Age distribution of volcanism along aseismic ridges in the eastern Indian Ocean,” In: Proceedings of the Ocean Drilling Program, Scientific Results, 121. College Station, TX: Ocean Drilling Program. Ed. by J. Weissel, J. Peirce, E. Taylor, J. Alt, et al. (College Station, Texas, USA, 1991), pp. 507–517. https://doi.org/10.2973/odp.proc.sr.121.162.1991

  50. C. G. Farnetani, B. Legras, and P. J. Tackley, “Mixing and deformations in mantle plumes,” Earth Planet. Sci. Lett. 196, 1–15 (2002).

    Article  Google Scholar 

  51. T. J. C. Francis and R. W. Raitt, “Seismic refraction measurements in the Northwest Indian Ocean,” J. Geophys. Res. 71, 427–449 (1967).

    Article  Google Scholar 

  52. F. A. Frey and C. M. Sung, “Geochemical results for basalts from Sites 253 and 254,” In: Initial Reports of the Deep Sea Drilling Project, 22, Ed. by B. P. Luyendyk and T. A. Davies (Washington, DC, US Government Print. Office, 1974), pp. 567–572. https://doi.org/10.2973/dsdp.proc.26.123.1974

    Book  Google Scholar 

  53. F. A. Frey, W. B. Jones, H. Davies, and D. Weis, “Geochemical and petrologic data for basalts from Sites 756, 757, and 758: implications for the origin and evolution of the Ninetyeast Ridge,” In: Proceedings of the Ocean Drilling Program, Scientific Results, 121: College Station, TX: Ocean Drilling Program, Ed. by J. Weissel, J. Peirce, E. Taylor, J. Alt, et al. (College Station, Texas, USA, 1991), pp. 611–659. https://doi.org/10.2973/odp.proc.sr.121.163.1991

  54. F. A. Frey and D. Weis, “Temporal evolution of the Kerguelen Plume: Geochemical evidence from 38 to 82 Ma lavas forming the Ninetyeast Ridge,” Contrib. Mineral. Petrol. 121, 12–28 (1995).

    Article  Google Scholar 

  55. F. A. Frey and D. Weis, “Reply to the Class et al. discussion of “Temporal evolution of the Kerguelen Plume: Geochemical evidence from 38 to 82 Ma lavas forming the Ninetyeast Ridge,” Contrib. Mineral. Petrol. 124, 104–110 (1996).

    Article  Google Scholar 

  56. F. A. Frey, M. Pringle, P. Meleney, et al., “Diverse mantle sources for Ninetyeast Ridge magmatism: Geochemical constraints from basaltic glasses,” Earth Planet. Sci. Lett. 303, 215–224 (2011).

    Article  Google Scholar 

  57. A. F. Frey, G. I. Nobre Silva, S. Huang, et al., “Depleted components in the source of hotspot magmas: Evidence from the Ninetyeast Ridge (Kerguelen),” Earth Planet. Sci. Lett. 426, 293–304 (2015).

    Article  Google Scholar 

  58. I. Grevemeyer, E. R. Flueh, C. Reichert, et al., “Crustal architecture and deep structure of the Ninetyeast Ridge hotspot trail from active-source ocean bottom seismology,” Geophys. J. Int. 144, 414–431 (2001).

    Article  Google Scholar 

  59. R. Hekinian, “Petrology of the Ninety East Ridge (Indian Ocean) compared to other aseismic ridges,” Contrib. Mineral. Petrol. 43, 125–147 (1974).

    Article  Google Scholar 

  60. R. L. Kinzler and T. L. Grove, “Primary magmas of Mid-Ocean Ridge Basalts. Pap. 2. Applications,” J. Geophys. Res. 97 (B5), 6907–6926 (1992).

    Article  Google Scholar 

  61. E. M. Klein and C. H. Langmuir, “Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness,” J. Geophys. Res. 92 (B4), 8089–8115 (1987).

    Article  Google Scholar 

  62. A. Kopf, D. Klaeschen, W. Weinrebe, et al., “Geophysical evidence for late stage magmatism at the Central Ninetyeast Ridge, Eastern Indian Ocean,” Mar. Geophys. Res. 22, 225–234 (2001). https://doi.org/10.1023/A:1012297315620

    Article  Google Scholar 

  63. K. S. Krishna, “Two decades of Indian research on Ninetyeast Ridge reveal how seafloor spreading and mantle plume activities have shaped the Eastern Indian Ocean,” Curr. Sci. 106, 1178–1179 (2014).

    Google Scholar 

  64. K. S. Krishna, D. Gopala Rao, M. V. Ramana, et al., “Tectonic model for the evolution of oceanic crust in the Northeastern Indian Ocean from the Late Cretaceous to the Early Tertiary,” J. Geophys. Res. 100, 20011–20024 (1995). https://doi.org/10.1029/94JB02464

    Article  Google Scholar 

  65. K. S. Krishna, D. Gopala Rao, L. V. Subba Raju, et al., “Paleocene on-axis hot spot volcanism along the Ninetyeast Ridge: An interaction between the Kerguelen Hot Spot and the Wharton Spreading Center,” Proc. Indian Acad. Sci. Ser. Earth Planet. Sci. 108, 255–267 (1999).

    Google Scholar 

  66. K. S. Krishna, Y. P. Neprochnov, D. Gopala Rao, and B. N. Grinko, “Crustal structure and tectonics of the Ninetyeast Ridge from seismic and gravity studies,” Tectonics 20 (3), 416–433 (2001).

    Article  Google Scholar 

  67. K. S. Krishna, H. Abraham, W. W. Sager, et al., “Tectonics of the Ninetyeast Ridge derived from the spreading records of the contiguous oceanic basins and age constraints of the ridge,” J. Geophys. Res. 117, B04101 (2012). https://doi.org/10.1029/2011JB008805

    Article  Google Scholar 

  68. R. T. Kumar and B. F. Windley, “Spatial variations of effective elastic thickness over the Ninetyeast Ridge and implications for its structure and tectonic evolution,” Tectonophysics 608, 847–856 (2013).

    Article  Google Scholar 

  69. A. S. Laughton, D. H. Matthews, and R. L. Fisher, “The structure of the Indian Ocean and the sea floor spreading,” In: The Sea, Ed. by A. E. Maxwell (Wiley–Intersci., N.Y., 1970), Vol. 4, pp. 543–586.

    Google Scholar 

  70. X. Le Pichon and J. K. Heirtzler, “Magnetic anomalies in the Indian Ocean and the sea-floor spreading,” J. Geophys. Res. 73, 2101–2117 (1968).

    Article  Google Scholar 

  71. C.-S. Liu, J. R. Curray, and J. M. McDonald, “New constraints on the tectonic evolution of the Eastern Indian Ocean,” Earth Planet. Sci. Lett. 65, 331–342 (1983).

    Article  Google Scholar 

  72. J. N. Ludden, G. Thompson, W. B. Bryan, and F. A. Frey, “The origin of lavas from the Ninetyeast Ridge, Eastern Indian Ocean: An evaluation of fractional crystallization models,” J. Geophys. Res. 85, 4405–4420 (1980).

    Article  Google Scholar 

  73. B. P. Luyendyck and W. Rennick, “Tectonic history of aseismic ridges in the Eastern Indian Ocean,” GSA Bull. 88, 1347–1356 (1977).

    Article  Google Scholar 

  74. T. Maurin and C. Rangin, “Impact of the 90° E Ridge at the Indo-Burmese subduction zone imaged from deep seismic reflection data,” Mar. Geol. 266, 143–155 (2009).

    Article  Google Scholar 

  75. R. E. Moeremans and S. C. Singh, “Seismic evidence of continental margin influence on the Ninetyeast Ridge in the Bay of Bengal,” Geophys. Rev. Lett. 41, 7143–7150 (2014). https://doi.org/10.1002/2014GL061598

    Article  Google Scholar 

  76. M. Mukhopadhyay and M. B. R. Krishna, “Gravity anomalies and deep structure of the Ninetyeast Ridge north of the equator, Eastern Indian Ocean—A hot spot trace model,” Mar. Geophys. Res. 17, 201–216 (1995).

    Article  Google Scholar 

  77. Y. Niu and R. Batiza, “An empirical method for calculations produced beneath Mid-Ocean Ridges: Application for axis and off-axis (seamounts) melting,” J. Geophys. Res. 96 (B13), 21753–21777 (1991).

    Article  Google Scholar 

  78. I. G. Nobre Silva, D. Weis, J. S. Scoates, and J. Barling, “The Ninetyeast Ridge and its relation to the Kerguelen, Amsterdam, and St. Paul Hotspots in the Indian Ocean,” J. Petrol. 54 (6), 1177–1210 (2013). https://doi.org/10.1093/petrology/egt009

    Article  Google Scholar 

  79. J. Peirce, J. Weissel, E. Taylor, et al., Proceedings of the Ocean Drilling Program: Initial Reports (Oceanic Drilling Program, College Station, USA, 1989), Vol. 121. https://doi.org/10.2973/odp.proc.ir.121.1989

  80. D. E. Petroy and D. A. Wiens, “Historical seismicity and implications for diffuse plate convergence in the Northeast Indian Ocean,” J. Geophys. Res. 94, 12301–12319 (1989).

    Article  Google Scholar 

  81. J. J. Royer, J. W. Peirce, and J. K. Weissel, “Tectonic constraints on the Hot Spot Formation of Ninetyeast Ridge,” In: Proceedings of the Ocean Drilling Program: Scientific Results, 121: College Station (TX) (Ocean Drilling Program), Ed. by J. Weissel, J. Peirce, E. Taylor, J. Alt, et al. (College Station, Texas, USA, 1991), pp. 763–775.

  82. W. W. Sager, et al., Cruise Report KNOX06RR R/V “Roger Revelle,” 2007 (Nat. Sci. Found., Washington, DC, 2007). http://earthref.org/erda/1172.

    Google Scholar 

  83. W. W. Sager, C. F. Paul, S. Krishna, et al., “Large fault fabric of the Ninetyeast Ridge implies near-spreading ridge formation,” Geophys. Rev. Lett. 37, L17304 (2010). https://doi.org/10.1029/2010GL044347

    Article  Google Scholar 

  84. W. W. Sager, J. M. Bull, and K. S. Krishna, “Active faulting on the Ninetyeast Ridge and its relation to deformation of the Indo-Australian plate,” J. Geophys. Res. 118, 4648–4668 (2013). https://doi.org/10.1002/jgrb.50319

    Article  Google Scholar 

  85. A. D. Saunders, M. Storey, I. L. Gibson, P. Leat, J. Hergt, and R. N. Thompson, “Chemical and isotopic constraints on the origin of basalts from Ninetyeast Ridge, Indian Ocean: Results from DSDP Legs 22 and 26 and ODP Leg 121,” In: Proceeding of the Ocean Drilling Program, Scientific Results, 121: College Station (TX) (Ocean Drilling Program), Ed. by J. Weissel, J. Peirce, E. Taylor, J. Alt, et al. (College Station, Texas, USA, 1991), pp. 559–590. https://doi.org/10.2973/odp.proc.sr.121.169.199

  86. J. G. Sclater and R. L. Fisher, “The evolution of the East Central Indian Ocean, with emphasis on the tectonic setting of Ninetyeast Ridge,” GSA Bull. 85 (5), 683–702 (1974).

    Article  Google Scholar 

  87. K. M. Sreejith and K. S. Krishna, “Spatial variations in isostatic compensation mechanisms of the Ninetyeast Ridge and their tectonic significance,” J. Geophys. Res. 118, 1–20 (2013). https://doi.org/10.1002/jgrb.50383

    Article  Google Scholar 

  88. K. M. Sreejith and K. S. Krishna, “Magma production rate along the Ninetyeast Ridge and its relationship to Indian Plate motion and Kerguelen Hot Spot activity,” Geophys. Rev. Lett. 42, 1105–1112 (2015). https://doi.org/10.1002/2014GL062993

    Article  Google Scholar 

  89. C. Subrahmanyam, R. Gireesh, S. Chand, et al., “Geophysical characteristics of the Ninetyeast Ridge—Andaman island arc/trench convergent zone,” Earth Planet. Sci. Lett. 266, 29–45 (2008).

    Article  Google Scholar 

  90. V. M. Tiwari, et al., “Analysis of satellite gravity and bathymetry data over Ninety-East Ridge: Variation in the compensation mechanism and implication for emplacement process,” J. Geophys. Res. 108 (B2), 2109 (2003).

    Google Scholar 

  91. G. Thompson, W. B. Bryan, F. A. Frey, and C. M. Sung, “Petrology and geochemistry of basalts and related Rocks from Sites 214, 215, 217, DSDP Leg 22, Indian Ocean,” In: Proceedings of the Ocean Drilling Program: Initial Reports, 22, College Station (TX) (Ocean Drilling Program), Ed. by C. C. Von der Borch, J. G. Sclater, et al. (U.S. Government Print. Office, Washington, 1974), pp. 459–468.

  92. J. J. Veevers, J. G. Jones, and J. A. Talent, “Indo-Australian stratigraphy and the configuration and dispersal of Gondwanaland,” Nature 229, 383–388 (1971).

    Article  Google Scholar 

  93. C. C. Von der Borch, J. G. Sclater, et al., “Regional synthesis of the Deep See Drilling results from Leg 22 in the Eastern Indian Ocean,” In: Proceedings of the Ocean Drilling Program: Initial Reports (U.S. Government Print. Office, Washington, 1974), Vol. 22, pp. 815–835.

    Google Scholar 

  94. D. Weis and F. A. Frey, “Isotope geochemistry of Ninetyeast Ridge basement basalts: Sr, Nd, and Pb evidence for involvement of the Kerguelen hot spot,” In: Proceeding of the Ocean Drilling Program, Scientific Results, 121: College Station (TX) (Ocean Drilling Program), Ed. by J. Weissel, J. Peirce, E. Taylor, J. Alt, et al. (College Station, Texas, USA, 1991), pp. 591–610. https://doi.org/10.2973/odp.proc.sr.121.170.1991

  95. J. Weissel, J. Peirce, E. Taylor, et al., Proceeding of the Ocean Drilling Program, Scientific Results. 121: College Station, TX (Ocean Drilling Program) (College Station, Texas, USA, 1991). https://doi.org/10.2973/odp.proc.sr.121.1991

  96. M. Willig, A. Stracke, C. Beier, and V. J. M. Salters, “Constraints on mantle evolution from Ce–Nd–Hf isotope systematics,” Geochim. Cosmochim. Acta 272, 36–53 (2020).

    Article  Google Scholar 

  97. Y. Zhang and G. Ting, “Depletion ages and factors of MORB mantle sources,” Earth Planet. Sci. Lett. 530, 115926 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the reviewers A.A. Peive (GIN RAS, Moscow, Russia) and E.P. Dubinin (Moscow State University, Moscow, Russia) for careful reading of the article and valuable comments, which were taken into account to improve the article.

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 19-15-50101). The geophysical data were processed and interpreted under a state task (topic no. 0128-2021-0005) and with the support of the Russian Foundation for Basic Research (project no. 19-05-00680A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Levchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levchenko, O.V., Sushchevskaya, N.M. & Marinova, Y.G. The Nature and Evolution of the Ninetyeast Ridge: A Key Tectonic and Magmatic Feature of the East Indian Ocean. Geotecton. 55, 194–218 (2021). https://doi.org/10.1134/S0016852121020060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852121020060

Keywords:

Navigation