Skip to main content
Log in

Fold-Axis Parallel Extension along the Southern Ending of the Quito (Ecuadorian Andes) Fault System: Implications in River Network and Aquifer Geometry

  • Published:
Geotectonics Aims and scope

Abstract

Extension parallel to fold axis represents a rarely documented tectonic process that occur in different tectonic settings such as large-scale orogenic belts, mountain ranges, and thrust and fold belts. Along the Ecuadorian Andes, extensional systems have only been reported as tectonic boundaries of local intermontane basins, pull-apart depressions and outer-arc stretching faults along hinge surfaces in compressional antiforms. The Quito fault system shows in planform view a right-stepping en-echelon arrangement which southernmost anticlinal ridge terminates as an arcuate structure locally dissected by the Saguanchi Gorge. Valley hillslopes of this transverse drainage display evidence of tectonic extension featured by several swarms of normal faults commonly dipping towards the valley bottom. Magnetotellurics sounding obtained across a N‒S line parallel to the crestline axis reveals three contiguous and distinguishable domains of which the central one shows a wedge-shaped geometry pointing down. This tectonic evidence for ongoing extensional deformation suggests that the process of fold-axis-parallel extension controlled the tectonic development and dissection of the Saguanchi Gorge across the anticlinal ridge. This episode marks a significant change in the groundwater recharge and aquifer storage conditions between the Quito basin and the inter-Andean Depression aquifer systems, currently in production to provide the potable water supply for the Quito city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Alvarado, L. Audin, J. M. Nocquet, S. Lagreulet, M. Segovia, Y. Font, G. Lamarque, H. Yepes, P. Mothes, F. Rolandone, P. Jarrín, and X. Quidelleur, “Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity,” Tectonics 33, 67–83 (2014).

    Article  Google Scholar 

  2. A. Alvarado, L. Audin, J. M. Nocquet, E. Jaillard, P.  Mothes, P. Jarrín, M. Segovia, F. Rolandone, and D. Cisneros, “Partitioning of oblique convergence in the Northern Andes subduction zone: Migration history and the present-day boundary of the North Andean Sliver in Ecuador,” Tectonics 35, 1048‒1065 (2016).

    Article  Google Scholar 

  3. W. Alvarez, “Drainage on evolving fold-thrust belts: A study of transverse canyons in the Apennines,” Basin Res. 11, 267–284 (1999).

    Article  Google Scholar 

  4. R. Armijo, P. Tapponnier, J. L. Mercier, and T. L. Han, “Quaternary extension in southern Tibet: Field observations and tectonic implications,” J. Geophys. Res., [Solid Earth Planets] 91, 13 803‒13 872 (1986).

  5. A. Aydin and A. Nur, “Evolution of pull-apart basins and their scale independence,” Tectonics 1, 91‒105 (1982).

    Article  Google Scholar 

  6. S. Baize, L. Audin, T. Winter, A. Alvarado, L. Pilatasig, M. Taipe, P. Reyes, P. Kauffmann, and H. Yepes, “Paleoseismology and tectonic geomorphology of the Pallatanga fault (Central Ecuador), a major structure of the South-American crust,” Geomorphology 237, 14‒28 (2015).

    Article  Google Scholar 

  7. J. C. Balanyá, A. C. Blanc, M. D. Azpiroz, I. Expósito, F. Torcal, V. P. Peña, and G. B. Rea, “Arc-parallel vs back-arc extension in the Western Gibraltar arc: Is the Gibraltar forearc still active?,” Geol. Acta. 10, 249‒263 (2012).

    Google Scholar 

  8. B. C. Burchfiel and J. H. Stewart, “Pull-apart origin of the central segment of Death Valley, California,” Geol. Soc. Am. Bull. 77, 439‒442 (1966).

    Article  Google Scholar 

  9. J. P. Burg, M. Brunel, D. Gapais, G. M. Chen, and G. H. Liu, “Deformation of leucogranites of the crystalline Main Central Sheet in southern Tibet (China),” J. Struct. Geol. 6, 535‒542 (1984).

    Article  Google Scholar 

  10. A. Chauvet and M. Séranne, “Extension-parallel folding in the Scandinavian Caledonides: Implications for late-orogenic processes,” Tectonophysics 238, 31‒54 (1994).

    Article  Google Scholar 

  11. D. Dietrich, “Fold-axis parallel extension in an arcuate fold-and thrust belt: The case of the Helvetic nappes,” Tectonophysics 170, 183‒212 (1989).

    Article  Google Scholar 

  12. O. Egbue and J. Kellogg, “Pleistocene to present North Andean escape,” Tectonophysics 489, 248‒257 (2010).

    Article  Google Scholar 

  13. A. Egüez, A. Alvarado, and H. Yepes, Map of Quaternary Faults and Folds of Ecuador and its Offshore Regions (U.S. Geol. Surv., Denver, Colo., 2003).

    Book  Google Scholar 

  14. EMAAP-Q: Mapa Hidrogeológico del Distrito Metropolitano de Quito, No. 19 of Empresa Metropolitana de Alcantarillado y Agua Potable de Quito, Tec. Rep. (2009).

  15. N. Feuillet, I. Manighetti, P. Tapponnier, and E.  Jacques, “Arc parallel extension and localization of volcanic complexes in Guadeloupe, Lesser Antilles,” J. Geophys. Res.: Solid Earth 107 (2002). https://doi.org/10.1029/2001JB000308

  16. H. Fossen, C. Teyssier, and D. L. Whitney, “Transtensional folding,” J. Struct. Geol. 56, 89‒102 (2013).

    Article  Google Scholar 

  17. D. Gapais, A. Pêcher, E. Gilbert, and M. Ballèvre, “Synconvergence spreading of the higher Himalaya crystalline in Ladakh,” Tectonics 11, 1045‒1056 (1992).

    Article  Google Scholar 

  18. Operation Manual for Stratagem Systems Running IMAG-EM, Ver. 2.19 (Geometrics, Inc., San Jose, Calif., 2007).

  19. D. Grujic and N. S. Mancktelow, “Folds with axes parallel to the extension direction: An experimental study,” J. Struct. Geol. 17, 279‒291 (1995).

    Article  Google Scholar 

  20. T. P. Harding, “Seismic characteristics and identification of negative flower structures, positive flower structures, and positive structural inversion,” AAPG Bull. 69, 582‒600 (1985).

    Google Scholar 

  21. C. Hibsch, A. Alvarado, H. Yepes, V. H. Perez, and M. Sébrier, “Holocene liquefaction and soft-sediment deformation in Quito (Ecuador): A paleoseismic history recorded in lacustrine sediments,” J. Geodyn. 24, 259‒280 (1997).

    Article  Google Scholar 

  22. D. Hungerbühler, M. Steinmann, W. Winkler, D. Seward, A. Egüez, D. E. Peterson, U. Helg, and C. Hammer, “Neogene stratigraphy and Andean geodynamics of southern Ecuador,” Earth Sci. Rev. 57, 75‒124 (2002).

    Article  Google Scholar 

  23. M. J. Jessup, D. L. Newell, J. M. Cottle, A. L. Berger, and J. A. Spotila, “Orogen-parallel extension and exhumation enhanced by denudation in the trans-Himalayan Arun River gorge, Ama Drime Massif, Tibet-Nepal,” Geology 36, 587‒590 (2008).

    Article  Google Scholar 

  24. E. Kendrick, M. Bevis, R. Smalley, B. Brooks, R. B. Vargas, E. Lauria, and L. P. S. Fortes, “The Nazca-South America Euler vector and its rate of change,” J. South Am. Earth Sci. 16, 125‒131 (2003).

    Article  Google Scholar 

  25. J. T. Kingma, “Possible of Piercement structures, local unconformities, and secondary basins in the Eastern Geosyncline, New Zealand,” N. Z. J. Geol. Geophys. 1, 269‒274 (1958).

    Article  Google Scholar 

  26. D. Kirkwood, M. Malo, P. St-Julien, and P. Therrien, “Vertical and fold-axis parallel extension within a slate belt in a transpressive setting, northern Appalachians,” J. Struct. Geol. 17, 329‒343 (1995).

    Article  Google Scholar 

  27. A. Lavenu, T. Winter, and F. Davila, “A Pliocene-Quaternary compressional basin in the Interandean depression, central Ecuador,” Geophys. J. Int. 121, 279‒300 (1995).

    Article  Google Scholar 

  28. M. Litherland and J. A. Aspden, “Terrane-boundary reactivation: A control on the evolution of the Northern Andes,” J. South Am. Earth Sci. 5, 71‒76 (1992).

    Article  Google Scholar 

  29. C. Manciati, PhD Thesis (Montpellier, France, 2014).

  30. P. Mann, M. R. Hempton, D. C. Bradley, and K. Burke, “Development of pull-apart basins,” J. Geol. 91, 529‒554 (1983).

    Article  Google Scholar 

  31. J. G. Masek, B. L. Isacks, E. J. Fielding, and J. Browaeys, “Rift flank uplift in Tibet: Evidence for a viscous lower crust” Tectonics 13, 659‒667 (1994).

    Article  Google Scholar 

  32. K. R. McClay, “Glossary of thrust tectonics terms,” in Thrust Tectonics, Ed. by K. R. McClay (Chapman & Hall, London, 1992), pp. 419‒433.

    Book  Google Scholar 

  33. J. A. McDermott, K. X. Whipple, K. V. Hodges, and M. C. Van Soest, “Evidence for Plio-Pleistocene north-south extension at the southern margin of the Tibetan Plateau, Nyalam region,” Tectonics 32, 317‒333 (2013).

    Article  Google Scholar 

  34. D. K. McPhee, B. A. Chuchel, and L. Pellerin, Audiomagnetotelluric Data from Spring, Cave, and Coyote Spring Valleys, Nevada, No. 2006‒1164 of U.S. Geol. Surv. Open-File Rep. (2006).

  35. P. Molnar and P. Tapponnier, “Cenozoic tectonics of Asia: Effects of a continental collision,” Science 189 (4201), 419‒426 (1975).

    Article  Google Scholar 

  36. P. Molnar and P. Tapponnier, “Active tectonics of Tibet,” J. Geophys. Res., B 83, 5361‒5375 (1978).

  37. D. R. Montgomery and D. B. Stolar, “Reconsidering Himalayan river anticlines,” Geomorphology 82, 4‒15 (2006).

    Article  Google Scholar 

  38. V. Mouslopoulou, A. Nicol, T. A. Little, and J. J. Walsh, “Terminations of large strike-slip faults: An alternative model from New Zealand,” in Tectonics of Strike-Slip Restraining and Releasing Bends, Vol. 290 of Geol. Soc. London, Spec. Publ., Ed. by W. D. Cunningham and P. Mann (London, 2007), pp. 387‒415.

  39. A. R. Moustafa and S. M. Khalil, “Control of compressional transfer zones on syntectonic and post-tectonic sedimentation: Implications for hydrocarbon exploration,” J. Geol. Soc. (London, U. K.) 174, 336‒352 (2017).

    Article  Google Scholar 

  40. J. Ni and J. E. York, “Late Cenozoic tectonics of the Tibetan plateau,” J. Geophys. Res., B 83, 5377‒5384 (1978).

  41. J. M. Nocquet, J. C. Villegas-Lanza, M. Chlieh, P.  A. Mothes, F. Rolandone, P. Jarrín, D. Cisneros, A. Alvarado, L. Audin, F. Bondoux, X. Martin, Y. Font, M. Régnier, M. Vallée, T. Tran, et al., “Motion of continental slivers and creeping subduction in the northern Andes,” Nat. Geosci. 7, 287‒291 (2014).

    Article  Google Scholar 

  42. L. A. Peñafiel, Thesis in Engineering Geology (Quito, Ecuador, 2009).

  43. L. A. Peñafiel, F. J. Alcalá, E. Barragán, and O. Larrea, “Evaluación del balance hídrico en un área vulcano-sedimentaria de alta montaña poco monitorizada en la Cordillera de los Andes: Acuífero del río Pita, norte de Ecuador,” Rev. Latino-Am. Hidrogeol. 10, 502–508 (2016).

    Google Scholar 

  44. L. Seeber and A. Pêcher, “Strain partitioning along the Himalayan arc and the Nanga Parbat antiform,” Geology 26, 791‒794 (1998).

    Article  Google Scholar 

  45. J.-P. Soulas, A. Egüez, H. Yepes, and H. Pérez, “Tectónica activa y riesgo sísmico en los Andes Ecuatorianos y el extremo sur de Colombia,” Bol. Geol. Ecuatoriano 2, 3‒11 (1991).

    Google Scholar 

  46. M. Stokes and A. E. Mather, “Tectonic origin and evolution of a transverse drainage: The Río Almanzora, Betic Cordillera, Southeast Spain,” Geomorphology 50, 59‒81 (2003).

    Article  Google Scholar 

  47. M. Stokes, A. E. Mather, A. Belfoul, and F. Farik, “Active and passive tectonic controls for transverse drainage and river gorge development in a collisional mountain belt (Dades Gorges, High Atlas Mountains, Morocco),” Geomorphology 102, 2‒20 (2008).

    Article  Google Scholar 

  48. A. G. Sylvester, “Strike-slip faults,” Geol. Soc. Am. Bull. 100, 1666‒1703 (1988).

    Article  Google Scholar 

  49. P. Tapponnier, J. L. Mercier, R. Armijo, H. Tonglin, and Z. Ji, “Field evidence for active normal faulting in Tibet,” Nature 294, 410 (1981).

    Article  Google Scholar 

  50. D. Villagómez, Thesis in Engineering Geology (Quito, Ecuador, 2003).

  51. R. E. Wilcox, T. T. Harding, and D. R. Seely, “Basic wrench tectonics,” AAPG Bull. 57, 74‒96 (1981).

    Google Scholar 

  52. W. Winkler, D. Villagómez, R. Spikings, P. Abegglen, and A. Egüez, “The Chota basin and its significance for the inception and tectonic setting of the inter-Andean depression in Ecuador,” J. South Am. Earth Sci. 19, 5‒19 (2005).

    Article  Google Scholar 

  53. N. H. Woodcock and M. Fischer, “Strike-slip duplexes,” J. Struct. Geol. 8, 725‒735 (1986).

    Article  Google Scholar 

  54. K. L. Zonge and L. J. Hughes, “Controlled source audio-frequency magnetotellurics,” in Electromagnetic Methods in Applied Geophysics, Vol 2: Application, Parts A and B, No. 3 of Inv. Geophys., Ed. by M. N. Nabighian (Soc. Explor. Geophys., 1991), ch. 9, pp. 713‒810.

Download references

ACKNOWLEDGMENTS

We are thankful to Coronel Iván Jarrín and Mayor José Yépez from the Instituto Espacial Ecuatoriano (Quito, Ecuador) for providing us the Geometrics equipment. We grateful to Vicente Condolo (Quito, IEE, Ecuador) for logistics and Mayelin Cabascango (Quito, EPN, Ecuador) for software assistance. The valuable comments and suggestions by Professor Valery S. Imaev and an anonymous reviewer are greatly appreciated.

Funding

This work was supported by the Escuela Politécnica Nacional through the Project PII-DG-02-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. B. Reyes.

Additional information

Reviewer: V.S. Imaev

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peñafiel, L.A., Reyes, P.S., Alcalá, F.J. et al. Fold-Axis Parallel Extension along the Southern Ending of the Quito (Ecuadorian Andes) Fault System: Implications in River Network and Aquifer Geometry. Geotecton. 54, 256–265 (2020). https://doi.org/10.1134/S0016852120020090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120020090

Keywords:

Navigation