Skip to main content
Log in

Tectonic Evolution of the Basement–Sedimentary Cover System and Morhpostructural Differentiation of Sedimentary Basins

  • Published:
Geotectonics Aims and scope

Abstract

The article provides geological data on the morphostructural differentiation of sedimentary basins and the results of tectonophysical and digital modeling reflecting the shape and possible mechanisms of this process. It is shown that morphostructural differentiation is the fundamental property of sedimentary basins, associated with interaction of rock masses in the basement–sedimentary cover system. The specific features of rock mass deformation in the basement and cover of sedimentary basins, as well as the kinematic conditions characterizing the morphostructural differentiation of sedimentary basins, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. R. E. Aizberg, R. G. Garetskii, I. D. Kudryavets, and T. A. Starchik, “Tectonics of the Orsha basin and its relationship with basement structures,” Dokl. Nats. Akad. Nauk Belarusi 48 (1), 88–92 (2004).

    Google Scholar 

  2. N. V. Aksamentova, “Basement faults,” in Geology of Belarus, Ed. by R. G. Garetskii, A. V. Matveev, and A. S. Mokhnach (Inst. Geol. Nauk. Nats. Akad. Nauk Belarusi, Minsk, 2001), pp. 493–497.

    Google Scholar 

  3. E. G. Areshev, V. P. Gavrilov, Ch. L. Dong, N. Zao, O.  K. Popov, V. V. Pospelov, N. T. Shan, and O. A. Shnip, Geology and Petroleum Potential of the Sunda Shelf Basement (Neft’ i gaz, Moscow, 1997) [in Russian].

  4. A. A. Bakirov, Petroleum-Bearing Zones of North and South America (Gosgeoltekhizdat, Moscow, 1959) [in Russian].

    Google Scholar 

  5. D. M. Bachmanov, V. G. Trifonov, A. V. Mikolaichuk, A. E. Dodonov, A. A. Zarshchikov, and F. A. Vishnyakov, “Neotectonic evolution of the Central Tien Shan inferred from the data on structure of recent basins,” in Proceedings of the 4th International Symposium “Geodynamics of Intracontinental Orogens and Geoecological Problems,” Bishkek, Kyrgyszstan,2008 (Nauchn. Stantsiya Ross. Akad. Nauk, Bishkek, 2008), pp. 16–19.

  6. I. I. Bebeshev, Doctoral Dissertation in Geology and Mineralogy (Moscow, 1988).

  7. P. M. Bondarenko, “Modeling of stress fields, prediction of dislocations in shear zones and systematic of these dislocations,” in Shear Tectonic Fractures and Their Role in Generation of Mineral Deposits, Ed. by Yu.  M. Pushcharovskii and P. S. Voronov (Nauka, Moscow, 1991), pp. 37–52.

    Google Scholar 

  8. V. D. Bosov, Tertiary Continental Deposits of Tadzhikistan (Donish, Dushanbe, 1972) [in Russian].

    Google Scholar 

  9. V. S. Burtman, Tien Shan and High Asia: Tectonics and Geodynamics in the Paleozoic, Vol. 570 of Tr. Geol. Inst. Ross. Akad. Nauk, Ed. by A. A. Mossakovskii (GEOS, Moscow, 2006) [in Russian].

  10. V. S. Burtman, Tien Shan and High Asia: Cenozoic Geodynamics, Vol. 603 of Tr. Geol. Inst. Ross. Akad. Nauk, Ed. by Yu.G. Leonov (GEOS, Moscow, 2012) [in Russian].

  11. R. G. Garetskii and G. I. Karataev, Suture Zones of Fennoskandia, Sarmatia, and Volgo-Uralia (Belaruskaya navuka, Minsk, 2014) [in Russian].

  12. Geology and Mineral Resources of the Greater Caucasus, Ed. by E. E. Milanovskii and N. V. Koronovskii (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  13. S. V. Gol’din, “Lithosphere destruction and physical mesomechanics,” Fiz. Mezomekh. 5 (5), 54–22 (2002).

    Google Scholar 

  14. R. M. Davidzon, G. P. Kraidenkov, and G. Kh. Salibaev, Stratigraphy of Paleogene Deposits of the Tajik Depression and Adjacent Areas (Donish, Dushanbe, 1982) [in Russian].

    Google Scholar 

  15. M. R. Dzhalilov, Yu. N. Andreev, F. Kh. Khakimov, and E. V. Gol’tman, Cretaceous Deposits of Central Tadzhikistan (Donish, Dushanbe, 1971) [in Russian].

    Google Scholar 

  16. K. F. Dallmus, “Mechanics of basin evolution and its relation to the habitat of oil in the basin,” in Habitat of Oil, Ed. by L. G. Weeks (AAPG, Tulsa, Okla., 1958), pp. 883–931.

    Google Scholar 

  17. Regularities of the Tien Shan Geologic Evolution in the Cenozoic, Ed. by O. K. Chediya (Ilim, Frunze, 1973) [in Russian].

  18. Yu. M. Kazakov, A. N. Mamontov, and A. Kh. Khasanov, Geological Structure of the Ziddy Basin (Tadzh. Gos. Univ., Dushanbe, 1985) [in Russian].

    Google Scholar 

  19. V. Yu. Kerimov, M. G. Leonov, A. V. Osipov, R. N. Mustaev, and Vu Nam Hai, “Hydrocarbons in the basement of the South China Sea (Vietnam) shelf and structural–tectonic model of their formation,” Geotectonics 53, 42–59 (2019).

    Article  Google Scholar 

  20. K. A. Klitin, “Tectonic structure of the central part of the Tuvan intermontane basin,” Izv. Akad. Nauk SSSR. Ser. Geol., No. 7, 34–48 (1957).

  21. V. L. Klishevich and A. N. Khramov, “Reconstruction of the Turkestan Paleo-ocean (South Tien Shan) in the Early Devonian,” Geotektonika, No. 4, 66–76 (1993).

    Google Scholar 

  22. S. Yu. Kolodyazhnyi, D. S. Zykov, M. G. Leonov, and S. Yu. Orlov, “The evolution of dome- and shear-type structural features of the northwestern Onega area (Kareliya rock massif),” Ross. Zh. Nauk Zemle 2, 135–151 (2000).

    Google Scholar 

  23. N. V. Koronovskii, A. I. Gushchin, M. Yu. Nikitin, L. V. Panina, and A. N. Stafeev, “Geological evolution and formation of the modern structure of the Terek–Caspian foredeep,” in Tectonics of Orogenic Structures of Caucasus and Central Asia, Ed. by Yu. G. Leonov and V. E. Khain (Nauka, Moscow, 1990), pp. 4–35.

    Google Scholar 

  24. Yu. A. Kosygin and V. A. Magnitskii, “Possible types of geometric and mechanic relationships between primary vertical motions, magmatism, and folding,” Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol. 23 (3), 3–15 (1948).

    Google Scholar 

  25. G. G. Kocharyan, Geomechanics of Faults, Ed. by V. V. Adushkin (GEOS, Moscow, 2016) [in Russian].

    Google Scholar 

  26. I. D. Kudryavets, R. E. Aizberg, R. G. Garetskii, Ya. G. Gribik, T. A. Starchik, and V. I. Shkuratov “Regional seismic profiling of the Orsha basin using the common depth point method,” Dokl. Nats. Akad. Nauk Belarusi 47 (6), 108–112 (2003).

    Google Scholar 

  27. M. G. Leonov, Tectonics of the Consolidated Crust, Vol. 575 of Tr. Geol. Inst. Ross. Akad. Nauk, Ed. by Yu. O. Gavrilov (GEOS, Moscow, 2008) [in Russian].

  28. M. G. Leonov, E. S. Przhiyalgovskii, and E. V. Lavrushina, Granites: Postmagmatic Tectonics and Hydrocarbon Potential, Vol. 619 of Tr. Geol. Inst. Ross. Akad. Nauk, Ed. by K. E. Degtyarev (GEOS, Moscow, 2018) [in Russian].

  29. M. G. Leonov, Yu. A. Morozov, Yu. P. Stefanov, and R. A. Bakeev, “Zones of concentrated deformation (flower structures): Field observations and modeling results,” Geodin. Tektonofiz. 9, 693–720 (2018).

    Article  Google Scholar 

  30. L. I. Lobkovskii, Geodynamics of Spreading and Subduction Zones with respect to Two-Stage Plate Tectonics (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  31. V. S. Luchnikov, “Upper Jurassic marine deposits of the Zeravshan–Hissar mountain area,” Izv. Akad. Nauk SSSR. Ser. Geol., No. 2, 138–141 (1979).

  32. V. I. Makarov, Recent Tectonic Structure of Central Tien Shan (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  33. A. I. Mel’nikov and V. M. Nikitin, Shear Zones: A Textbook (Fil. Tekh. Inst., Sev.-Vost. Fed. Univ., Neryungri, 2010) [in Russian].

  34. A. V. Mikolaichuk, M. V. Gubrenko, and L. M. Bogomolov, “Fold deformations of a preorogenic peneplain in the recent structure of the Central Tien Shan,” Geotectonics 37, 31–37 (2003).

    Google Scholar 

  35. A. V. Mikolaichuk, E. Sobel, M. V. Gubrenko, and A. N. Lobanchenko, “Structural evolution of the Tien Shan orogen’s northern margin,” Izv. Nats. Akad. Nauk Resp. Kyrg., No. 4, 50–58 (2003).

  36. Yu. A. Morozov, M. G. Leonov, and D. V. Alekseev, “Pull-apart formation mechanism of Cenozoic basins in the Tien Shan and their transpressional evolution: Structural and experimental evidence,” Geotectonics 48, 24–53 (2014).

    Article  Google Scholar 

  37. Paleoproterozoic Onega Structure: Geology, Tectonics, Deep Structure, and Minerageny, Ed. by L. V. Glushanin, N. V. Sharov, and V. V. Shchiptsov (Inst. Geol. Karel. Nauchn. Tsentr Ross. Akad. Nauk, Petrozavodsk, 2011) [in Russian].

    Google Scholar 

  38. E. I. Patalakha, “Differential mobility of jointly deformed heterogeneous geologic bodies, its causes and consequences: Viscosity inversion,” Geotektonika, No. 4, 15–20 (1971).

    Google Scholar 

  39. A. V. Poleshchuk, “Sill genesis in the Paleoproterozoic tectonic evolution of the Onega Trough, Baltic shield,” Dokl. Earth Sci. 439, 939–943 (2011).

    Article  Google Scholar 

  40. B. V. Polyanskii, Mesozoic Carboniferous Formations of the Mesotethys Nothern Margin (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  41. V. S. Ponomarev, Energy Saturation of the Geological Medium, Vol. 582 of Tr. Geol. Inst. Ross. Akad. Nauk, Ed. by Yu. G. Leonov (Nauka, Moscow, 2008) [in Russian].

  42. G. S. Porshnyakov, Hercynides of the Altai and Adjacent Areas of South Tien Shan (Leningrad. Gos. Univ., Leningrad, 1973) [in Russian].

    Google Scholar 

  43. E. S. Przhiyalgovskii and E. V. Lavrushina, “Fold deformations of the Paleozoic basement roof in the Chunkurchak Trough, Kyrgyz Ala-Too Range,” Geotectonics 51, 366–382 (2017).

    Article  Google Scholar 

  44. Crustal Faults of Belarus, Ed. by R. E. Aizberg (Krasiko-Print, Minsk, 2007) [in Russian].

    Google Scholar 

  45. A. F. Revuzhenko, Mechanics of Granular Medium, Ed. by E. I. Shemyakin (OFSET, Novosibirsk, 2003) [in Russian].

    Google Scholar 

  46. J. L. Roberts, “The intrusion of magma into brittle rocks,” in Mechanism of Igneous Intrusion, Spec. Is. No. 2 of Geol. J., Ed. by G. Newall and N. Rast (1972), pp. 230–283.

  47. I. Sadybakasov, Neotectonics of High Asia (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  48. N. M. Sinitsyn, Tectonics of the Fergana Valley Mountain Framing (Leningrad. Gos. Univ., Leningrad, 1960) [in Russian].

    Google Scholar 

  49. Yu. P. Stefanov and R. A. Bakeev, “Formation of flower structures in a geological layer at a strike-slip displacement in the basement,” Izv., Phys. Solid Earth. 51, 535–547 (2015).

    Article  Google Scholar 

  50. M. Tadzhibekov, Candidate’s Dissertation in Geology and Mineralogy (Frunze, 1986).

  51. P. P. Timofeev, V. I. Bebeshev, and Yu. V. Makarov, “The main features of Jurassic landscapes evolution in the southeastern Central Asia,” Litol. Polezn. Iskop., No. 2, 37–56 (1985).

  52. A. I. Timurziev, Doctoral Dissertation in Geology and Mineralogy (Moscow, 2009).

  53. V. G. Trifonov, E. V. Artyushkov, A. E. Dodonov, D. M. Bachmanov, A. V. Mikolaichuk, and F. A. Vishnyakov, “Pliocene-Quaternary orogeny in the Central Tien Shan,” Russ. Geol. Geophys. 49, 98–112 (2008).

    Article  Google Scholar 

  54. N. P. Chamov, “Structure and stages in development of the cataplatform cover in the Central Russian–Belomorian province,” Lithol. Miner. Resour. 51, 484–499 (2016).

    Article  Google Scholar 

  55. O. K. Chediya and N. G. Utkina, “Recent tctogenesis of the Tien Shan epiplatform orogen,” in Geodynamics of Intracontinental Mountain Regions, Ed. by N. A. Logachev (Nauka, Novosibirsk, 1990), pp. 46–53.

    Google Scholar 

  56. G. Shtille, Selected Works (Mir, Moscow, 1964) [in Russian].

  57. F. N. Yudakhin, Geophysical Fields, Deep Structure, and Seismicity of Tien Shan (Ilim, Frunze, 1983) [in Russian].

  58. P. Alvarez and J.-C. Maurin, “Evolution sédimentaire et tectonique du bassin protérozoïque supérieur de Comba (Congo) : Stratigraphie séquentielle du Supergroupe Ouest-Congolien et modèle d'amortissement sur décrochements dans le contexte de la tectogénèse panafricaine,” Precambrian Res. 50, 137–171 (1991).

    Article  Google Scholar 

  59. N. Atmaoui, N. Kukowski, B. Stöckhert, and D. König, “Initiation and development of pull-apart basins with Riedel shear mechanism: Insights from scaled clay experiments,” Int. J. Earth Sci. 95, 225–238 (2006).

    Article  Google Scholar 

  60. M. E. Bullen, D. W. Burbank, and J. I. Garver, “Building the northern Tien Shan: Integrated thermal, structural, and topographic constraints,” J. Geol. 111, 149–165 (2003).

    Article  Google Scholar 

  61. C. S. Cambell, “Rapid granular flow,” Ann. Rev. Fluid Mech. 22, 57–92 (1990).

    Article  Google Scholar 

  62. T. P. Dooley and G. Schreurs, “Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results,” Tectonophysics 574–575, 1–71 (2012).

    Article  Google Scholar 

  63. R. Gunn, “Isostasy: Extended,” J. Geol. 57, 263–279 (1949).

    Article  Google Scholar 

  64. E. Krenkel, Geologie und bodenschätze Afrikas (Acad. Verlagsgesellschaft, Leipzig, 1957) [in German].

    Google Scholar 

  65. A. Mehta, Granular Matter: An Interdisciplinary Approach (Springer, New York, 1994).

    Book  Google Scholar 

  66. G. Pirtle, “Michigan structural basin and its relation-ship to surrounding areas,” Am. Assoc. Petrol. Geol. Bull. 16, 145–152 (1932).

    Google Scholar 

  67. D. J. Sanderson and W. R. D. Marchini, “Transpression,” J. Struct. Geol. 6, 449–458 (1984).

    Article  Google Scholar 

  68. A. G. Silvester, “Strike-slip faults,” Geol. Soc. Am. Bull. 100, 1666–1703 (1988).

    Article  Google Scholar 

  69. Yu. P. Stefanov, R. A. Bakeev, Yu. L Rebetsky, and V. A. Kontorovich, “Structure and formation stages of a fault zone in a geomedium layer in a strike-slip displacement of the basement,” Phys. Mesomech. 17, 2004–2015 (2014).

    Article  Google Scholar 

  70. Tectonique de l’Afrique (UNESCO, Paris, 1971).

  71. S. C. Thompson, R. J. Weldon, C. M. Rubin, K. Abdrakhmatov, P. Molnar, and G. W. Berger, “Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia,” J. Geophys. Res.: Solid Earth 107, 7–32 (2001).

    Google Scholar 

  72. Trinh Xuan Cuong and J. K. Warren, “Bach Ho field, a fractured granitic basement reservoir, Cuu Long Basin, offshore SE Vietnam: A “buried-hill” play,” J. Pet. Geol. 32, 129–155 (2009).

    Article  Google Scholar 

  73. H. M. Yaeger and S. R. Nagel, “La physique de l’état granulaire,” La Recherche 249, 1380–1387 (1992).

    Google Scholar 

  74. C. Vita-Finzi, “Pie de Palo, Argentina: A cataclastic diapir,” Geomorphology 104, 317–322 (2009).

    Article  Google Scholar 

Download references

Funding

This work was supported by the State Budget (state task entitled “Description of Sedimentary Basins of the East European and North American Cratons” for the Geological Institute, Russian Academy of Sciences), the Russian Science Foundation (project no. 16-17-10059), the Russian Foundation for Basic Research (project no. 19-05-00256), and by the Scientific Research Foundation (project no. 0331-2019-0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Leonov.

Additional information

Reviewer: T.N. Kheraskova

Translated by E. Murashova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonov, M.G., Morozov, Y.A., Przhiyalgovskii, E.S. et al. Tectonic Evolution of the Basement–Sedimentary Cover System and Morhpostructural Differentiation of Sedimentary Basins. Geotecton. 54, 147–172 (2020). https://doi.org/10.1134/S0016852120020089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120020089

Keywords:

Navigation