Skip to main content
Log in

Paleostress and Fluid Pressure Analysis of Vein Opening Using 3D Mohr Circle from the Quartz Vein Orientation Data of the South Delhi Terrane, Ambaji Area, NW India

  • Published:
Geotectonics Aims and scope

Abstract

In many instances the sulphide mineralization is associated with quartz vein-related hydrothermal alteration zone. The syntectonic quartz veins display preferred orientation as their intrusion is controlled by normal stress (σn) acting across the foliation/fracture planes and the fluid pressure (Pf) of the quartz veins. The Pf and paleostress (ϕ = tectonic stress ratio) are measurable by using stereoplot and 3D Mohr plot. We have determined the above parameters from the quartz veins in the Cu–Pb–Zn mineralization belt of South Delhi terrane, NW India. The mineralization occurs in the mica schist and metabasalt. The rock types show three phases of folding (F1–F3), greenschist facies metamorphism and multiple phases of granite intrusion. Attitude of 170 quartz veins have been measured, the NE–SW direction is the most prominent. Though some of the quartz veins show a cross-cutting relationship, we have treated them broadly synchronous. Stereoplot shows a girdle distribution pattern with an elliptical void area at the centre and σ1σ2 plane strikes N52° E. Further, σ1 = 120°/75°, σ2 = 052°/07°, and σ3 = 323°/07° indicate that maximum extension was NW–SE. The θ2 = 12°, θ3 = 40°. R ' = 0.95, ϕ = 0.90 indicate high value for R ' leading to dilation of wide range of fractures and the high ϕ value suggesting uniaxial extension. 3D Mohr plot indicates that Pf fluctuated between σ2 < Pf < σ1. Since sulphide mineralization is related to quartz vein intrusion, we interpret similar stress field for mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. S. André, J. Sausse, and M. Lespinasse, “New approach for the quantification of paleostress magnitudes: Application to the Soultz vein system (Rhine graben, France),” Tectonophysics 336, 215–231 (2001).

    Article  Google Scholar 

  2. J. Angelier, “Tectonic analysis of fault slip data sets,” J. Geophys. Res., B 89, 5835‒5848 (1984).

  3. G. Baer, M. Beyth, and Z. Reches, “Dikes emplaced into fractured basement, Timna igneous complex,” Israel. J. Geophys. Res.: Solid Earth 99, 24039‒24051 (1994).

    Article  Google Scholar 

  4. C. A. Barton, M. D. Zoback, and D. Moos, “Fluid flow along potentially active faults in crystalline rocks,” Geology 23, 683‒686 (1995).

    Article  Google Scholar 

  5. T. K. Biswal, “Polyphase deformation in Delhi rocks, south-east Amirgarh, Banaskantha district, Gujarat, in Precambrian of the Aravalli Mountain, Rajasthan, India,” Mem., Geol. Soc. India 7, 267–277 (1988).

    Google Scholar 

  6. T. K. Biswal, K. C. Gyani, R. Parthasarathy, and D. R. Pant, “Tectonic implication of geochemistry of gabbro-norite-basic granulite suite in the Proterozoic Delhi Supergroup, Rajasthan, India,” J. Geol. Soc. India 52, 721–732 (1998a).

    Google Scholar 

  7. A. K. Choudhary, K. Gopalan, and C. A. Sastry, “Present status of the geochronology of the Precambrian rocks of Rajasthan,” Tectonophysics 105, 131–140 (1984).

    Article  Google Scholar 

  8. M. Deb and R. I. Thorpe, “Geochronological constraints in the Precambrian geology of northwestern India and their metallogenic implication,” in International Workshop on Sediment-Hosted Lead-Zinc Sulfide Deposit in the Northwestern Indian Shield, Delhi-Udaipur, India, Ed. by M. Deb and W. D. Goodfellow (Delhi Univ., New Delhi, 2001), pp. 137–152.

  9. M. Deb, R. I. Thorpe, G. L. Cumming, and P. A. Wagner, “Age, source and stratigraphic implication of Pb-isotope data for conformable, sediment-hosted, base metal deposits in the Proterozoic Aravalli-Delhi Orogenic Belt, Northwestern India,” Precambrian Res. 43, 1–22 (1989).

    Article  Google Scholar 

  10. P. T. Delaney, D. D. Pollard, J. I. Zioney, and E.  H. McKee, “Field relations between dikes and joints: emplacement processes and palaeostress analysis,” J. Geophys. Res. 91 (B5), 4920‒4938 (1986).

    Article  Google Scholar 

  11. S. J. Desai, M. P. Patel, and S. S. Merh, “Polymetamorphites of Balamar-Abu Road area, north Gujarat and southwestern Rajasthan,” J. Geol. Soc. India 19, 383–394 (1978).

    Google Scholar 

  12. Fareeduddin and A. Kröner, “Single zircon age constraints on the evolution of Rajasthan granulite,” in The Indian Precambrian, Ed. by B. S. Paliwal (Scientific Publishers, Jodhpur, India, 1998), pp. 547–556.

    Google Scholar 

  13. S. N. Gupta, Y. K. Arora, R. K. Mathur, B. P. Iqballuddin, T. N. Sahai, and S. B. Sharma, Lithostratigraphic Map of the Aravalli Region (Geol. Surv. Ind., Hyderabad, 1980).

    Google Scholar 

  14. A. M. Heron, Geology of Central Rajputana, Vol. 79 of Mem., Geol. Surv. Ind. (1953).

  15. R. J. H. Jolly and D. J. Sanderson, “A Mohr circle reconstruction for the opening of a pre-existing fracture,” J. Struct. Geol. 19, 887‒892 (1997).

    Article  Google Scholar 

  16. R. J. H. Jolly, L. Wei, and R. J. Pine, “Stress-sensitive fracture-flow modelling in fractured reservoirs,” in SPE International Petroleum Conference and Exhibition, Villahermosa, Mexico, 2000 (Soc. Petrol. Eng., 2000), Document ID SPE-59042-MS. https://doi.org/10.2118/59042-MS

  17. M. S. Khan, T. E. Smith, M. Raza, and J. Huang, “Geology, geochemistry and tectonic significance of mafic-ultramafic rocks of Mesoproterozoic Phulad ophiolite suite of South Delhi Fold Belt, NW Indian Shield,” Gondwana Res. 8, 553–566 (2005).

    Article  Google Scholar 

  18. A. I. Martínez-Poza, E. Druguet, L. M. Castaño, and J. Carreras, “Dyke intrusion into a pre-existing joint network: The Aiguablava lamprophyre dyke swarm (Catalan Coastal Ranges),” Tectonophysics 630, 75‒90 (2014).

    Google Scholar 

  19. F. Mazzarini and I. Isola, “Hydraulic connection and fluid overpressure in upper crustal rocks: Evidence from the geometry and spatial distribution of veins at Botrona quarry, Southern Tuscany, Italy,” J. Struct. Geol. 29, 1386–1399 (2007).

    Article  Google Scholar 

  20. F. Mazzarini, G. Musumeci, and A. R. Cruden, “Vein development during folding in the upper brittle crust: The case of tourmaline-rich veins of eastern Elba Island, northern Tyrrhenian Sea, Italy,” J. Struct. Geol. 33, 1509–1522 (2011).

    Article  Google Scholar 

  21. C. J. McKeagney, C. A. Boulter, R. J. H. Jolly, and R. P. Foster, “3D Mohr Circle analysis of vein opening, Indarama lode-gold deposit, Zimbabwe: Implications for exploration,” J. Struct. Geol. 26, 1275‒1291 (2004).

    Article  Google Scholar 

  22. T. K. Mondal and M. A. Mamtani, “3D Mohr circle construction using vein orientation data from Gadag (Southern India) ‒ implications to recognize fluid pressure fluctuation,” J. Struct. Geol. 56, 45‒56 (2013).

    Article  Google Scholar 

  23. D. Mukhopadhyay, T. Bhattacharya, N. Chattopadhyay, R. Lopez, and T. O. Tobisch, “Anasagar gneiss: A folded granitoid pluton in the Proterozoic South Delhi Folded Belt, Central Rajasthan,” Proc. Indian Acad. Sci., Earth Planet. Sci. 109, 21–37 (2000).

  24. D. Mukhopadhyay, N. Chattopadhyay, and T. Bhattacharya, “Structural evolution of a gneiss dome in the axial zone of the proterozoic South Delhi Fold Belt in central Rajasthan,” J. Geol. Soc. India 75, 18–31 (2010).

    Article  Google Scholar 

  25. K. Naha, S. K. Mitra, and T. K. Biswal, “Structural history of the rocks of the Delhi Group around Todgarh, Central Rajasthan,” India J. Geol. 59, 126–156 (1987).

    Google Scholar 

  26. M. K. Pandit, L. M. Carter, L. D. Ashwal, R. D. Tucker, T. H. Torsvik, B. Jamtveit, and S. K. Bhushan, “Age, petrogenesis and significance of 1 Ga granitoids and related rocks from the Sendra area, Aravalli Craton, NW India,” J. Asian Earth Sci. 22, 363–381 (2003).

    Article  Google Scholar 

  27. J. G. Ramsay, Folding and Fracturing of Rocks (McGraw-Hill, New York, 1967).

    Google Scholar 

  28. D. J. Sanderson and X. Zhang, “Critical stress localization of flow associated with deformation of well-fractured rock masses, with implications for mineral deposits,” in Fractures, Fluid Flow and Mineralization, Vol. 155 if Geol. Soc. London, Spec. Publ., Ed. by K. McCaffrey, L. Lonegran, and J. Wilkinson (London, 1999), pp. 69‒81.

  29. K. Sato, A. Yamaji, and S. Tonai, “Parametric and non-parametric statistical approaches to the determination of paleostress from dilatant fractures: Application to an Early Miocene dike swarm in Central Japan,” Tectonophysics 588, 69‒81 (2013).

    Article  Google Scholar 

  30. R. H. Sibson and J. Scott, “Stress/fault controls on the containment and release of over pressured fluids: Examples from gold‒quartz vein systems in Juneau, Alaska, Victoria, Australia, and Otago, New Zealand,” Ore Geol. Rev. 13, 293‒306 (1998).

    Article  Google Scholar 

  31. Y. K. Singh, B. D. Waele, S. Karmaker, S. Sarkar, and T. K. Biswal, “Tectonics setting of the Balaram-Kui-Surpagla-Kengora granulites of the South Delhi Terrane of the Aravalli Mobile Belt, NW India and its implication on correlation with the East African Orogen in the Gondwana Assembly,” Precambrian Res. 183, 669‒688 (2010).

    Article  Google Scholar 

  32. C. Srikarni, M. A. Limaye, and A. S. Janardhan, “Sapphirine bearing granulites from Abu-Balaram area, Gujarat State: Implications for India‒Madagascar Connection,” Gondwana Res. 7, 1214–1218 (2004).

    Article  Google Scholar 

  33. S. K. Tiwari and T. K. Biswal, “Palaeostress and magma pressure measurement of granite veins in the Neoproterozoic Ambaji granulite, South Delhi terrane, Aravalli–Delhi mobile belt, NW India: Implication towards the extension-driven exhumation of the middle-lower crustal rocks,” J. Earth Syst. Sci. 128 (2019). https://doi.org/10.1007/s12040-019-1187-5

  34. S. K. Tiwari and T. K. Biswal, “Dynamics, EPMA Th-U-total Pb monazite geochronology and tectonic implications of deformational fabric in the lower-middle crustal rocks, a case study of Ambaji granulite, NW India,” Tectonics 38, 2232‒2254 (2019).

    Article  Google Scholar 

  35. O. T. Tobisch, K. D. Collerson, T. Bhattacharya, and D. Mukhopadhyay, “Structural relationship and Sm‒Nd isotope systematics of polymetamorphic granitic gneisses and granitic rocks from Central Rajasthan, India: Implications for the evolution of the Aravalli craton,” Precambrian Res. 65, 319–339 (1994).

    Article  Google Scholar 

  36. A. M. Volpe and J. D. Macdougall, “Geochemistry and isotopic characteristics of mafic (Phulad ophiolite) and related rocks in the Delhi Supergroup, Rajasthan, India: Implications for rifting in the Proterozoic,” Precambrian Res. 48,167–191 (1990).

    Article  Google Scholar 

  37. A. Yamaji, K. Sato, and S. Tonai, “Stochastic modeling for the stress inversion of vein orientations: Paleostress analysis of the Pliocene epithermal veins in Southwestern Kyushu, Japan,” J. Struct. Geol. 32, 1137‒1146 (2010).

    Article  Google Scholar 

  38. A. Yamaji and K. Sato, “Clustering of fracture orientations using a mixed Bingham distribution and its application to paleostress analysis from dike or vein orientations,” J. Struct. Geol. 33, 1148–1157 (2011).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge Sudheer Kumar Tiwari and Bhuban Mohan Bahera (Indian Institute of Technology Bombay, India) for discussion and their helpful suggestion over the entire work.

We are grateful to the anonymous Reviewer for the comments that improved our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Sharma.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N.K., Biswal, T.K. Paleostress and Fluid Pressure Analysis of Vein Opening Using 3D Mohr Circle from the Quartz Vein Orientation Data of the South Delhi Terrane, Ambaji Area, NW India. Geotecton. 54, 97–105 (2020). https://doi.org/10.1134/S0016852120010136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120010136

Keywords:

Navigation