Skip to main content
Log in

Two Types of Plagiogranite from Mesozoic Ashin Ophiolite (Central Iran): a Mark of Tectonic Setting Change from Jurassic to Cretaceous

  • Published:
Geotectonics Aims and scope

Abstract

The Ashin ophiolite is situated in the western part of Central Iran and presents two stages of Jurassic and Cretaceous spreading. The Ashin ophiolite represents fragments of the Neo-Tethys oceanic lithosphere. Plagiogranite intrusions of this ophiolite have good exposures. Plagiogranites of Cretaceous are more fresh than the metamorphosed samples of Jurassic. The main minerals of plagiogranites from the Ashin ophiolite are plagioclase, quartz and amphibole. Plagiogranites of the Jurassic have tholeitic nature with higher amounts of amphibole, \({\text{F}}{{{\text{e}}}_{2}}{\text{O}}_{3}^{*},\) TiO2, Co and lower values of Mg#, Th and Sr than the Cretaceous calc-alkaline plagiogranites. The chondrite-normalized REE patterns of these plagiogranites are characterized by higher values of REEs and negative Eu anomalies for the Jurassic samples and low values of REEs and positive Eu anomalies for the Cretaceous ones. Very low values of HREEs in the Cretaceous plagiogranites indicates a non-peridotitic source rock. We suggest that the Jurassic plagiogranites are formed by fractional crystallization of a low-K tholeitic magma; and the adakitic Cretaceous plagiogranites are formed by partial melting of an amphibolite in the subducting slab. Geochemical criteria of the Ashin plagiogranites indicate changing the Ashin ophiolite tectonic setting from a mid-ocean ridge system in the Jurassic to a supra-subduction zone in the Cretaceous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. F. Barker, “Trondhjemite: Definition, environment and hypotheses of origin,” in Trondhjemites, Dacites and Related Rocks, Ed. by F. Barker (Elsevier, Amsterdam, 1979), pp.1‒12.

  2. J. S. Beard and G. E. Lofgren, “Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb,” J. Petrol. 32, 365‒401 (1991).

    Article  Google Scholar 

  3. R. G. Coleman, Ophiolites – Ancient Lithosphere? (Springer, New York, 1977).

    Book  Google Scholar 

  4. R. G. Coleman and M. M. Donato, “Oceanic plagiogranite revisited,” in Trondhjemites, Dacites and Related Rocks, Ed. By F. Barker (Elsevier, Amsterdam, Netherlands, 1979), pp. 149‒168.

    Google Scholar 

  5. R. G. Coleman and Z. E. Peterman, “Oceanic plagiogranite,” J. Geophys. Res. 80, 1099‒1108 (1975).

    Article  Google Scholar 

  6. W. A. Deer, R. A. Howie, and J. Zussman, An Introduction to the Rock-Forming Minerals (Longman, London, 1991).

    Google Scholar 

  7. M. J. Defant and M. S. Drummond, “Derivation of some modern arc magmas by melting of young subducted lithosphere,” Nature 347, 662‒665 (1990).

    Article  Google Scholar 

  8. S. Dixon and M. J. Rutherford, “Plagiogranites as late stage immiscible liquids in ophiolite and mid-ocean ridge suites: An experimental study,” Earth Planet. Sci. Lett. 45, 45‒60 (1979).

    Article  Google Scholar 

  9. M. S. Drummond and M. J. Defant, “A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons,” J. Geophys. Res., [Solid Earth Planets] 95, 21503‒21521 (1990).

  10. M. S. Drummond, M. J. Defant, and P. K. Kepezhinskas, “Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite magmas,” Trans. R. Soc. Edinburgh: Earth Sci. 87, 205‒215 (1996).

    Article  Google Scholar 

  11. P. A. Floyd, M. K. Yaliniz, and M. C. Goncuoglu, “Geochemistry and petrogenesis of intrusive and extrusive ophiolitic plagiogranites, Central Anatolian Crystalline Complex, Turkey,” Lithos 42, 225‒241 (1998).

    Article  Google Scholar 

  12. S. Foley, M. Tiepolo, and R. Vannucci, “Growth of early continental crust controlled by melting of amphibolite in subduction zones,” Nature 417, 837‒840 (2002).

    Article  Google Scholar 

  13. C. B. Grimes, T. Ushikubo, R. Kozdon, and J. W. Valley, “Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon,” Lithos 179, 48‒66 (2013).

    Article  Google Scholar 

  14. A. R. Hastie, A. C. Kerr, J. A. Pearce, and S. F. Mitchell, “Classification of altered volcanic island rocks using immobile trace elements, development of the Th–Co discrimination diagram,” J. Petrol. 48, 2341‒2357 (2007).

    Article  Google Scholar 

  15. T. N. Irvine and W. R. A. Baragar, “A guide to the chemical classification of the common volcanic rocks,” Can. J. Earth Sci. 8, 523‒548 (1971).

    Article  Google Scholar 

  16. J. Koepke, J. Berndt, S. T. Feig, and F. Holtz, “The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros,” Contrib. Mineral. Petrol. 153, 67‒84 (2007).

    Article  Google Scholar 

  17. B. E. Leake, A. R. Woolley, C. E. S. Arps, W. D. Birch, M. C. Gilbert, J. D. Grice, F. C. Hawthorne, A. Kato, H. J. Kisch, V. G. Krivovichec, K. Linthout, J. Laird, J. Mandarino, W. V. Maresch, E. H. Nickel, et al., “Nomenclature of amphiboles; Report of the Subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names,” Eur. J. Mineral. 9, 623‒651 (1997).

    Article  Google Scholar 

  18. R. W. Le Maitre, Igneous Rocks: A Classification and Glossary of Terms, 2nd ed., (Cambridge Univ. Press, Cambridge, 2002).

    Book  Google Scholar 

  19. M. V. Luchitskaya, O. L. Morozov, and S. A. Palandzhyan, “Plagiogranite magmatism in the Mesozoic island-arc structure of the Pekulney Ridge, Chukotka Peninsula, NE Russia,” Lithos 79, 251‒269 (2005).

    Article  Google Scholar 

  20. M. V. Luchitskaya, “Plagiogranites of the Kuyul ophiolite massif (northeastern Kamchatka, Koryak Upland),” Ofioliti 21, 131‒138 (1996).

    Google Scholar 

  21. A. Magganas, “Plagiogranitic rocks of Evros Ophiolite, NE Greece,” Bull. Geol. Soc. Greece, 40, 884‒898 (2007).

    Article  Google Scholar 

  22. P. D. Maniar and P. M. Piccoli, “Tectonic discrimination of granitoids,” Bull. Geol. Soc. Am. 101, 635‒643 (1989).

    Article  Google Scholar 

  23. H. Martin, R. H. Smithies, R. Rapp, J. F. Moyen, and D. Champion, “An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution,” Lithos 79, 1‒24 (2005).

    Article  Google Scholar 

  24. W. F. McDonough and S. S. Sun, “The composition of the Earth,” Chem. Geol. 120, 223‒253 (1995).

    Article  Google Scholar 

  25. E. A. K. Middlemost, “Iron oxidation ratios, norms and the classification of volcanic rocks,” Chem. Geol. 77, 19‒26 (1989).

    Article  Google Scholar 

  26. N. Nosouhian, G. Torabi, and S. Arai, “Late Cretaceous dacitic dyke swarm from Central Iran, a trace for amphibolite melting in a subduction zone,” Geotectonics 50, 295‒312 (2016).

    Article  Google Scholar 

  27. J. T. O’Connor, “A classification for quartz-rich igneous rock based upon feldspar ratios,” in Geological Survey Research 1965, Chapter B, Vol. 525B of U.S. Geol. Surv., Prof. Pap. (U.S. Gov. Print Office, Washington, DC, 1965), pp. B79‒B84.

  28. J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace element discrimination diagrams for the tectonic interpretation of granitic rocks,” J. Petrol. 25, 956‒983 (1984).

    Article  Google Scholar 

  29. H. R. Rollinson, “Ophiolitic trondhjemites: an analogue for the formation of Hadean felsic ‘crust’,” Terra Nova 20, 364‒369 (2008).

    Article  Google Scholar 

  30. H. R. Rollinson, “New models for the genesis of plagiogranites in the Oman ophiolite,” Lithos 112, 603‒614 (2009).

    Article  Google Scholar 

  31. T. Rushmer, “Partial melting of two amphibolites: Contrasting experimental results under fluid-absent conditions,” Contrib. Mineral. Petrol. 107, 41‒59 (1991).

    Article  Google Scholar 

  32. M. Sharkovski, M. Susov, B. Krivyakin, L. Morozov, V. Kiristaev, and E. Romanko, Geology of the Anarak area (Central Iran): Report TE/No.19 (Geol. Surv. Iran, 1984).

  33. J. W. Shervais, “Tonalites, trondhjemites, and diorites of the Elder Creek ophiolite, California: Low-pressure slab melting and reaction with the mantle wedge,” in Ophiolites, Arcs, and Batholiths: A Tribute to Cliff Hopson, Vol. 438 of Geol. Soc. Am., Spec. Pap., Ed. by J. E. Wright and J. W. Shervais (2008), pp. 113‒132.

  34. N. Shirdashtzadeh, G. Torabi, and S. Arai, “Metamorphism and metasomatism in the Jurassic Nain ophiolithic mélange, Central Iran,” Neues Jahrb. Geol. Palaeontol., Abh. 255, 255‒275 (2009).

    Article  Google Scholar 

  35. N. Shirdashtzadeh, G. Torabi, and S. Arai, “Two Mesozoic oceanic phases recorded in the basic and metabasic rocks of the Nain and Ashin-Zavar ophiolitic mélanges (Isfahan province, Central Iran),” Ofioliti 36, 191‒205 (2011).

    Google Scholar 

  36. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in Ocean Basins, Vol. 42 of Geol. Soc. London, Spec. Publ., Ed. by A. D. Saunders and M. J. Norry, (1989), pp. 313‒346.

  37. G. Torabi, “Late Permian post-ophiolitic trondhjemites from Central Iran: a mark of subduction role in growth of Paleozoic continental crust,” Island Arc 21, 215‒229 (2012).

    Article  Google Scholar 

  38. G. Torabi, “Middle Eocene volcanic shoshonites from western margin of Central-East Iranian Microcontinent (CEIM), a mark of previously subducted CEIM-confining oceanic crust,” Petrology 19, 675‒689 (2011).

    Article  Google Scholar 

  39. G. Torabi, “Early Oligocene alkaline lamprophyric dykes from the Jandaq area (Isfahan Province, Central Iran): An evidence of CEIM confining oceanic crust subduction,” Island Arc 19, 277‒292 (2010).

    Article  Google Scholar 

  40. G. Torabi, S. Arai, and H. Abbasi, “Eocene continental dyke swarm from Central Iran (Khur area),” Petrology 22, 1‒16 (2014).

    Article  Google Scholar 

  41. G. Torabi, N. Shirdashtzadeh, S. Arai, and J. Koepke, “Paleozoic and Mesozoic ophiolites of Central Iran: Amphibolites from Jandaq, Posht-e-Badam, Nain and Ashin ophiolites,” Neues Jahrb. Geol. Palaeontol., Abh. 262, 227‒240 (2011).

    Article  Google Scholar 

  42. T. Üner, Ç. Üner, Y. Özdemir, and R. Arat, “Geochemistry and origin of plagiogranites from the Eldivan Ophiolite, Çankırı (Central Anatolia, Turkey),” Geol. Carpathica 65, 195‒205 (2014).

    Article  Google Scholar 

  43. D. L. Whitney and B. W. Evans, “Abbreviations for names of rock-forming minerals,” Am. Mineral. 95, 185‒187 (2010).

    Article  Google Scholar 

  44. P. J. Wyllie and M. B. Wolf, “Amphibolite-dehydration melting: sorting out the solidus,” in Magmatic Processes and Plate Tectonics, Vol. 76 of Geol. Soc. London, Spec. Publ., Ed. by Ed. by H. M. Pritchard, T. Alabaster, N. B. W. Harris, and C. R. Neary (London, 1993), pp. 405‒416.

  45. M. B. Wolf and P. J. Wyllie, “Dehydration-melting of amphibolite at 10 kbar: Effects of temperature and time,” Contrib. Mineral. Petrol. 115, 369‒383 (1994).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the University of Isfahan (Iran) and Kanazawa University (Japan) for financial support. This paper has greatly benefited from the helpful and constructive comments by reviewers Prof. Dr. Marina V. Luchitskaya and Prof. Dr. Andrey A. Shchipansky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Torabi.

Additional information

Reviewers: M.V. Luchitskaya and A.A. Shchipansky

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi, G., Morishita, T. & Arai, S. Two Types of Plagiogranite from Mesozoic Ashin Ophiolite (Central Iran): a Mark of Tectonic Setting Change from Jurassic to Cretaceous. Geotecton. 53, 110–124 (2019). https://doi.org/10.1134/S0016852119010084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852119010084

Keywords:

Navigation