, Volume 52, Issue 2, pp 173–193 | Cite as

Tectono-Magmatic Evolution of the South Atlantic Continental Margins with Respect to Opening of the Ocean

  • E. N. Melankholina
  • N. M. Sushchevskaya


The history of the opening of the South Atlantic in Early Cretaceous time is considered. It is shown that the determining role for continental breakup preparation has been played by tectono-magmatic events within the limits of the distal margins that developed above the plume head. The formation of the Rio Grande Rise–Walvis Ridge volcanic system along the trace of the hot spot is considered. The magmatism in the South Atlantic margins, its sources, and changes in composition during the evolution are described. On the basis of petrogeochemical data, the peculiarities of rocks with a continental signature are shown. Based on Pb–Sr–Nd isotopic studies, it is found that the manifestations of magmatism in the proximal margins had features of enriched components related to the EM I and EM II sources, sometimes with certain participation of the HIMU source. Within the limits of the Walvis Ridge, as magmatism expanded to the newly formed oceanic crust, the participation of depleted asthenospheric mantle became larger in the composition of magmas. The role played by the Tristan plume in magma generation is discussed: it is the most considered as the heat source that determined the melting of the ancient enriched lithosphere. The specifics of the tectono-magmatic evolution of the South Atlantic is pointed out: the origination during spreading of a number of hot spots above the periphery of the African superplume. The diachronous character of the opening of the ocean is considered in the context of northward progradation of the breakup line and its connection with the northern branch of the Atlantic Ocean in the Mid-Cretaceous.


rifting breakup opening of the ocean proximal and distal margins hot spots magmatism isotopic composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Zabanbark, “Peculiarities of oil and gas basins on the Brazil continental margin,” Oceanology 41, 142–148 (2001).Google Scholar
  2. 2.
    A. Zabanbark, “Passive continental margins of West Africa and unusual features of the oil and gas potential of their deep-water part,” Oceanology 42, 291–297 (2002).Google Scholar
  3. 3.
    T. B. Ioumssi, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Ross. Univ. Druzhby Narodov, Moscow, 2004).Google Scholar
  4. 4.
    E. N. Melankholina and N. M. Sushchevskaya, “Development of continental margins of the Atlantic Ocean and successive breakup of the Pangaea-3 supercontinent,” Geotectonics 51, 40–52 (2017).CrossRefGoogle Scholar
  5. 5.
    A. A. Peyve, “Seamounts in the east of South Atlantic: Origin and correlation with Mesozoic–Cenozoic magmatic structures of West Africa,” Geotectonics 45, 195–209 (2011).CrossRefGoogle Scholar
  6. 6.
    V. N. Puchkov, “Relationship between plume and plate tectonics,” Geotectonics 50, 425–438 (2016).CrossRefGoogle Scholar
  7. 7.
    S. G. Skolotnev and A. A. Peive, “Composition, structure, origin, and evolution of off-axis linear volcanic structures of the Brazil Basin, South Atlantic,” Geotectonics 51, 53–73 (2017).CrossRefGoogle Scholar
  8. 8.
    P. Armienti and P. Longo, “Three-dimensional representation of geochemical data from a multidimensional compositional space,” Int. J. Geosci. 2, 231–239 (2011).CrossRefGoogle Scholar
  9. 9.
    J. Basile, R. Mascle, and È. Guiraud, “Phanerozoic geological evolution of the Equatorial Atlantic domain,” J. Afr. Earth Sci. 43, 275–282 (2005).CrossRefGoogle Scholar
  10. 10.
    K. Bauer, S. Neben, B. Schrekenberger, R. Emmerman, K. Hinz, W. Jokat, A. Schulze, R. B. Trumbull, and K. Weber, “Deep structure of the Namibia continental margin as derived from integrated geophysical studies,” J. Geophys. Res.: Solid Earth 105, 25829–25853 (2000). doi 10.1029/2000JB900227CrossRefGoogle Scholar
  11. 11.
    K. Becker, D. Franke, R. Trumbull, M. Schnabel, I. Heyde, B. Schreckenberger, H. Koopmann, K. Bauer, W. Jokat, and C. M. Krawczyk, “Asymmetry of highvelocity lower crust on the South Atlantic rifted margins and implications for the interplay of magmatism and tectonics in continental breakup,” Solid Earth 5, 1011–1026 (2014). doi 10.5194/se-5-1011-2014CrossRefGoogle Scholar
  12. 12.
    G. Bellieni, P. Brotzu, P. Comin-Chiaramonti, M. Ernesto, A. J. Melfi, I. G. Pacca, and E. M. Piccirillo, “Flood basalt to rhyolite suites in the southern Paraná Plateau (Brazil): Paleomagnetism, petrogenesis and geodynamic implications,” J. Petrol. 25, 579–618 (1984).CrossRefGoogle Scholar
  13. 13.
    G. Bellieni, G. Cavazzini, P. Comin-Chiaramonti, R. Petrini, A. J. Melfi, P. P. Pinese, P. Zantadeschi, A. De Min, and E. M. Piccirillo, “Lower Cretaceous tholeiitic dyke swarms from the Ponta Grossa Arch (southeast Brazil): Petrology, Sr–Nd isotopes and genetic relationships with the Paraná flood volcanism,” Chem. Geol. 89, 19–48 (1990). doi 10.1016/0009-2541(90)90058-FCrossRefGoogle Scholar
  14. 14.
    G. Bellieni, P. Comin-Chiaramonti, L. S. Marques, A. J. Melfi, A. J. R. Nardy, C. Papatrechas, E. M. Piccirillo, A. Roisenberg, and D. Stolfa, “Petrogenetic aspects of acid and basaltic lavas from the Paraná Plateau (Brazil): Geological, mineralogical and petrochemical relationships,” J. Petrol. 27, 915–944 (1986). doi 10.1093/petrology/27.4.915CrossRefGoogle Scholar
  15. 15.
    O. A. Blaich, J. I. Faleide, and F. Tsikalas, “Crustal breakup and continent-ocean transition at South Atlantic conjugate margins,” J. Geophys. Res.: Solid Earth 116 (2011). doi 10.1029/2010JB007686Google Scholar
  16. 16.
    C. Class and A. P le Roex, “South Atlantic DUPAL anomaly-dynamic and compositional evidence against a recent shallow origin,” Earth Planet. Sci. Lett. 305, 92–102 (2011).CrossRefGoogle Scholar
  17. 17.
    P. Comin-Chiaramonti, A. Cundari, E. M. Piccirillo, C. B. Gomes, F. Castorina, P. Censi, A. Demin, A. Marzoli, S. Speziale, and V. F. Velázquez, “Potassic and sodic igneous rocks from Eastern Paraguay: Their origin from the lithospheric mantle and genetic relationships with the associated Paraná flood tholeiites,” J. Petrol. 38, 495–528 (1997).CrossRefGoogle Scholar
  18. 18.
    P. Comin-Chiaramonti, A. Marzoli, C. de B. Gomes, A. Milan, C. Riccomini, V. F. Velázquez, M. M. S. Mantovani, Renne, C. C. G. Tassinari, and P. M. Vasconcelos, “The origin of post-Paleozoic magmatism in eastern Paraguay,” in Plates, Plumes and Planetary Processes, Vol. 430 of Geol. Soc. Am., Spec. Pap., Ed. by G. R. Fougler and D. M. Jurdy (2007), pp. 603–633. doi 10.1130/2007.2430(29)Google Scholar
  19. 19.
    J. Contreras, R. Zühlke, S. Bowman, and T. Bechstädt, “Seismic stratigraphy and subsidence analysis of the southern Brazilian margin (Campos, Santos and Pelotas basins),” Mar. Pet. Geol. 27, 1952–1980 (2010).CrossRefGoogle Scholar
  20. 20.
    I. Contrucci, L. Matias, M. Moulin, L. Géli, F. Klingelhoefer, H. Nouzé, D. Aslanian, J.-L. Olivet, J.-P. Réhault, and J.-C. Sibuet, “Deep structure of the West African continental margin (Congo, Zaïre, Angola), between 5° S and 8° S, from reflection/refraction seismics and gravity data,” Geophys. J. Int. 158, 529–553 (2004).CrossRefGoogle Scholar
  21. 21.
    V. Courtillot, A. Davaille, J. Besse, and J. Stock, “Three distinct types of hot spots in the Earth’s mantle,” Earth Planet. Sci. Lett. 205, 295–308 (2003).CrossRefGoogle Scholar
  22. 22.
    M. Evain, A. Afilhado, C. A. Rigoti, and D. Aslanian, Deep structure of the Santos Basin–São Paulo Plateau System, SE Brazil,” J. Geophys. Res.: Solid Earth 120, 5401–5431 (2015). doi 10.1002/2014JB011561CrossRefGoogle Scholar
  23. 23.
    T. Ewart, J. S. Marsh, S. C. Milner, A. R. Duncan, B. S. Kamber, and R. A. Armstrong, “Petrology and geochemistry of Early Cretaceous bimodal continental flood volcanism of the NW Etendeka, Namibia. Pt 1: Introduction, mafic lavas and re-evaluation of mantle source components,” J. Petrol. 45, 59–105 (2004).CrossRefGoogle Scholar
  24. 24.
    T. Ewart, S. C. Milner, R. A. Armstrong, and A. R. Dungan, “Etendeka Volcanism of the Goboboseb Mountains and Messum igneous complex, Namibia. Part I: Geochemical evidence of Early Cretaceous Tristan plume melts and the role of crustal contamination in the Paraná–Etendeka CFB,” J. Petrol. 39, 191–225 (1998). doi 10.1093/petroj/39.2.191CrossRefGoogle Scholar
  25. 25.
    A. M. G. Figueiredo and F. B. Machado, “Sr–Nd–Pb isotopic constraints on the nature of the mantle sources involved in the genesis of the high-Ti tholeiites from northern Paraná Continental Flood Basalts (Brazil),” J. South Am. Earth Sci. 46, 9–25 (2013).CrossRefGoogle Scholar
  26. 26.
    R. V. Fodor, “Low- and high-TiO2 flood basalts of southern Brazil: Origin from picritic parentage and a common mantle source,” Earth Planet. Sci. Lett. 84, 423–430 (1987).CrossRefGoogle Scholar
  27. 27.
    R. V. Fodor, S. B. Mukasa, and A. N. Sial, “Isotopic and trace-element indications of lithospheric and asthenospheric components in Tertiary alkalic basalts, northeastern Brazil,” Lithos 43, 197–217 (1998).CrossRefGoogle Scholar
  28. 28.
    R. V. Fodor, A. N. Sial, S. B. Mukasa, and E. H. McKee, “Petrology, isotope characteristics, and K–Ar ages of the Maranhao, northern Brazil, Mesozoic basalt province,” Contrib. Mineral. Petrol. 104, 555–567 (1990).CrossRefGoogle Scholar
  29. 29.
    R. V. Fodor and S. K. Vetter, “Rift-zone magmatism: Petrology of basaltic rocks transitional CFB to MORB, southeatern Brazil margin,” Contrib. Mineral. Petrol. 88, 307–321 (1984).CrossRefGoogle Scholar
  30. 30.
    D. Franke, S. Neben, S. Ladage, B. Schreckenberger, and K. Hinz, “Margin segmentation and volcano-tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic,” Mar. Geol. 244, 46–67 (2007). doi 10.1016/j.margeo.2007.06.009CrossRefGoogle Scholar
  31. 31.
    T. Fromm, L. Planert, W. Jokat, T. Ryberg, J. H. Behrmann, M. H. Weber, and C. Haberland, “South Atlantic opening: A plume-induced breakup?,” Geology 43, 931–934 (2015).CrossRefGoogle Scholar
  32. 32.
    F. Garland, S. Turner, and C. Hawkesworth, “Shifts in the source of the Paraná basalts through time,” Lithos 37, 223–243 (1996).CrossRefGoogle Scholar
  33. 33.
    GEOROC database, Max Planck Institute for Chemistry in Mainz. Accessed January 1, 2018.Google Scholar
  34. 34.
    S. A. Gibson, R. N. Thompson, J. A. Day, S. E. Humphris, and A. P. Dickin, “Melt-generation processes associated with the Tristan mantle plume: Constraints on the origin of EM-1,” Earth. Planet. Sci. Lett. 237, 744–767 (2005).CrossRefGoogle Scholar
  35. 35.
    T. Gladczenko, K. Hinz, O. Eldholm, H. Meyer, S. Neben, and J. Skogseid, “South Atlantic volcanic margins,” J. Geol. Soc. (London, U. K.) 154, 465–470 (1997).CrossRefGoogle Scholar
  36. 36.
    C. de B. Gomes, P. Comin-Chiaramonti, and V. F. A Velázquez, “Synthesis on the alkaline magmatism of Eastern Paraguay,” Braz. J. Geol. 43, 745–761 (2013). doi 10.5327/Z2317-488920130004000012CrossRefGoogle Scholar
  37. 37.
    S, Grand, R. D. van der Hilst, and S. Widiyantoro, “Global seismic tomography: A snapshot of convection in the Earth,” GSA Today 7 (4), 2–7 (1997).Google Scholar
  38. 38.
    C. J. Hawkesworth, K. Gallagher, L. Kirstein, M. S. M. Mantovani, D. W. Peate, and S. Turner, “Tectonic controls on magmatism associated with continental break-up: an example from the Paraná-Etendeka Province,” Earth Planet. Sci. Lett. 179, 335–349 (2000).CrossRefGoogle Scholar
  39. 39.
    B. Heit, X. Yuan, M. Weber, W. Geissler, W. Jokat, B. Lushetile, and K.-H. Hoffmann, “Crustal thickness and Vp/Vs ratio in NW Namibia from receiver functions: Evidence for magmatic underplating due to mantle plume-crust interaction,” Geophys. Res. Lett. 42, 3330–3337 (2015). doi 10.1002/2015GL063704CrossRefGoogle Scholar
  40. 40.
    K. Hoernle, J. Rohde, F. Hauff, D. Garbe-Schönberg, S. Homrighausen, R. Werner, and J. P. Morgan, “How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot,” Nat. Commun. 6, 7799 (2015). doi 10.1038/ncomms8799CrossRefGoogle Scholar
  41. 41.
    M. A. Jackson, C. Cramez, and J.-M. Fonck, “Role of subaerial volcanic rocks and mantle plumes in creation of South Atlantic margins: Implications for salt tectonics and source rocks,” Mar. Pet. Geol. 17, 477–498 (2000).CrossRefGoogle Scholar
  42. 42.
    V. A. Janasi, V. A. de Freitas, and L. H. Heaman, “The onset of flood basalt volcanism, Northern Paraná Basin, Brazil: A precise U–Pb baddeleyite/zircon age for a Chapecó-type dacite,” Earth Planet. Sci. Lett. 203, 147–153 (2011). doi 10.1016/j.epsl.2010.12.005CrossRefGoogle Scholar
  43. 43.
    J. Julià, M. Assumpção, and M. P. Rocha, “Deep crustal structure of the Paraná Basin from receiver functions and Rayleigh-wave dispersion: Evidence for a fragmented cratonic root,” J. Geophys. Res.: Solid Earth 113 (2008). doi 10.1029/2007JB005374Google Scholar
  44. 44.
    L. A. Kirstein, D. W. Peate, C. J. Hawkesworth, S. Turner, C. Harris, and M. S. M. Mantovani, “Early Cretaceous basaltic and rhyolitic magmatism in Southern Uruguay associated with the opening of the South Atlantic,” Bras. J. Petrol. 41, 1413–1438 (2000).CrossRefGoogle Scholar
  45. 45.
    F. Klingelhoefer, M. Evain, A. Afilhado, C. Rigoti, A. Loureiro, D. Alves, A. Leprêtre, M. Moulin, P. Schnurle, M. Benabdellouahed, A. Baltzer, M. Rabineau, A. Feld, A. Viana, and D. Aslanian, “Imaging proto-oceanic crust off the Brazilian Continental Margin,” Geophys. J. Int. 200, 471–488 (2015). doi 10.1093/gji/ggu387CrossRefGoogle Scholar
  46. 46.
    H. Koopmann, D. Franke, B. Schreckenberger, H. Schulz, A. Hartwig, H. Stollhofen, and R. di Primio, “Segmentation and volcano-tectonic characteristics along the SW African continental margin, South Atlantic, as derived from multichannel seismic and potential field data,” Mar. Pet. Geol. 50, 22–39 (2014).CrossRefGoogle Scholar
  47. 47.
    A. P. Le Roex, C. Class, and J. O’Connor, and W. Jokat. “Shona and Discovery aseismic ridge systems, South Atlantic: Trace element evidence for enriched mantle sources,” J. Petrol. 51, 2089–2120 (2010). doi 10.1093/petrology/egq050CrossRefGoogle Scholar
  48. 48.
    A. P. Le Roex and R. Lanyon, “Isotope and trace element geochemistry of Cretaceous Damaraland lamprophyres and carbonatites, Northwestern Namibia: Evidence for plume–lithosphere interactions,” J. Petrol. 39, 1117–1146 (1998).CrossRefGoogle Scholar
  49. 49.
    B. Linol, Doctoral Dissertation in Geology (Nelson Mandela Metropolitan Univ., 2013).Google Scholar
  50. 50.
    J. C. Marques, F. Jr. Chemale, R. S. C. de Brito, J. C. Frantz, W. Wildner, and M. C. Rost, “Nd–Sr isotopes and trace element constraints on the source of the basaltic sills from Southern Paraná magmatic province, Morungava region, Brazil,” V South American Symposium on Isotope Geology, Punta del Este, Uruguay, 2006, pp. 403–413.Google Scholar
  51. 51.
    L. S. Marques, B. Dupre, and E. M. Piccirillo, “Mantle source compositions of the Paraná Magmatic Province (southern Brazil): Evidence from trace element and Sr–Nd–Pb isotope geochemistry,” J. Geodyn. 28, 438–458 (1999).CrossRefGoogle Scholar
  52. 52.
    L. S. Marques, A. Rosset, A. De Min, M. Babinski, I. R. Ruiz, and E. M. Piccirillo, “Lead isotope constraints on mantle sources involved in the genesis of Mesozoic high Ti tholeiitic dykes (Urubici type) from São Francisco craton (Southern Espinhaço),” V South American Symposium on Isotope Geology, Punta del Este, Uruguay, 2006, pp. 399–402.Google Scholar
  53. 53.
    J. S. Marsh, A. Ewart, S. C. Milner, A. R. Duncan, and R. M. Miller, “The Etendeka Igneous Province: Magma types and their stratigraphic distribution with implications for the evolution of the Paraná–Etendeka flood basalt province,” Bull. Volcanol. 62, 464–486 (2001).CrossRefGoogle Scholar
  54. 54.
    A. Marzoli, L. Melluso, V. Morra, P. R. Renne, I. Sgrosso, M. D’Antonio, L. Duarte Morais, E. A. A. Morais, and G. Ricci, “Geochronology and petrology of Cretaceous basaltic magmatism in the Kwanza basin (western Angola), and relationship with the Paranà–Etendeka continental flood basalt province,” J. Geodyn. 28, 341–356 (1999).CrossRefGoogle Scholar
  55. 55.
    E. J. Milani, U. F. Faccini, C. M. Scherer, L. M. Araújo, and J. A. Cupertino, “Sequences and stratigraphic hierarchy of the Paraná basin (Ordovician to Cretaceous), southern Brazil,” Bol. IG-USP, Ser. Cient. (Univ. Sao Paulo, Inst. Geocienc.) 29, 125–173 (1998).CrossRefGoogle Scholar
  56. 56.
    S. C. Milner and A. P. Le Roex, “Isotopic characteristics of the Okenyenya igneous complex, northwestern Namibia: Constraints on the composition of the early Tristan plume and the origin of the EM 1 mantle component,” Earth Planet. Sci. Lett. 141, 277–291 (1996).CrossRefGoogle Scholar
  57. 57.
    S. C. Milner, A. P le Roex, and J. M. O’Connor, “Age of Mesozoic igneous rocks in northwest Namibia and their relationship to continental breakup,” J. Geol. Soc. (London, U. K.) 151, 97–104 (1995).CrossRefGoogle Scholar
  58. 58.
    A. M. P. Mizusaki, R. Petrini, G. Bellieni, P. Comin-Chiaramonti, J. Dias. P. A. Min, and E. M. Piccirillo, “Basalt magmatism along the passive continental margin of SE Brazil (Campos basin),” Contrib. Mineral Petrol. 111, 143–160 (1992).CrossRefGoogle Scholar
  59. 59.
    W. U. Mohriak, J. H. L. Rabelo, R. D. Matos, and M. C. Barros, “Deep seismic reflection profiling of sedimentary basins offshore Brazil: Geological objectives and preliminary results in the Sergipe Basin,” J. Geodyn. 20, 515–539 (1995).CrossRefGoogle Scholar
  60. 60.
    M. Moulin, D. Aslanian, J. L. Olivet, I. Contrucci, L. Matias, L. Géli, F. Klingelhoefer, H. Nouzé, J. Réhault, and P. Unternehr, “Geological constraints on the evolution of the Angolian margin based on reflection and refraction seismic data (ZaïAngo progect),” Geophys. J. Int. 162, 793–810 (2005).CrossRefGoogle Scholar
  61. 61.
    S. Neben, D. Franke, H. Hinz, H. Meyer, C. Reichert, and B. Schreckenberger, “The conjugate continental margins of Argentina and Namibia from seismic data,” EGS–AGU–EUG Joint Assembly, Nice, France, 2003, Abstr. 14428.Google Scholar
  62. 62.
    S. Neben, D. Franke, B. Schreckenberger, and T. Temmler, “The conjugate volcanic continental margins of the South Atlantic,” EOS, Trans. Am. Geophys. Union 86 (52) Fall Meet. Suppl., Abstr. T43B-1402.Google Scholar
  63. 63.
    P. O’Connor, PhD Thesis (Oregon State Univ., 1992).Google Scholar
  64. 64.
    J. M. O’Connor and R. A. Duncan, “Evolution of the Walvis Ridge–Rio Grande rise hot spot system: Implications for African and South American plate motions over plumes,” J. Geophys. Res., [Solid Earth Planets] 95, 17475–17502 (1990). doi 10.1029/90JB00782CrossRefGoogle Scholar
  65. 65.
    T. M. Owen-Smith, PhD Thesis (Univ. Witwatersrand, Johannesburg, 2014).Google Scholar
  66. 66.
    D. Peate, “The Paraná-Etendeka Province,” in Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, Vol. 100 of Am. Geophys. Union, Geophys. Monogr., Ed. by J. J. Mahoney and M. F. Coffin (Am. Geophys. Union, 1997), pp. 217–245.Google Scholar
  67. 67.
    D. W. Peate, C. J. Hawkesworth, M. M. S. Mantovani, N. W. Rogers, and S. P. Turner, “Petrogenesis and stratigraphy of the high-Ti/Y Urubici magma type in the Paraná flood basalt province and implications for the nature of “Dupal”-type mantle in the South Atlantic region,” J. Petrol. 40, 451–473 (1999). doi 10.1093/petroj/40.3.451CrossRefGoogle Scholar
  68. 68.
    E. M. Piccirillo, L. Civetta, R. Petrini, A. Longinelli, G. Bellieni, P. Comin-Chiaramonti, L. S. Marques, and A. J. Melfi, “Regional variations within the Paraná flood basalts (Southern Brazil): Evidence for subcontinental mantle heterogeneity and crustal contamination,” Chem. Geol. 75, 103–122 (1989).CrossRefGoogle Scholar
  69. 69.
    V. M. Pinto, L. A. Hartmann, J. Orestes, S. Santos, N. J. McNaughton, and W. Wildner, “Zircon U–Pb geochronology from the Paraná bimodal volcanic province support a brief eruptive cycle at ~135 Ma,” Chem. Geol. 281, 93–102 (2011).CrossRefGoogle Scholar
  70. 70.
    P. Renne, J. M. Glen, S. C. Milner, and A. R. Duncan, “Age of Etendeka flood volcanism and associated intrusions in south-western Africa,” Geology 24, 659–662 (1996).CrossRefGoogle Scholar
  71. 71.
    S. H. Richardson, A. J. Erlank, A. R. Duncan, and D. L. Reid, “Correlated Nd, Sr and Pb isotope variations in Walvis Ridge basalts and implications for the evolution of their mantle source,” Earth Planet. Sci. Lett. 59, 327–342 (1982).CrossRefGoogle Scholar
  72. 72.
    M. P. Rocha, M. Schimmel, and M. Assumpção, “Upper-mantle seismic structure beneath SE and Central Brazil from P- and S-wave regional traveltime tomography,” Geophys. J. Int. 184, 268–286 (2010). doi 10.1111/j.1365-246X.2010.04831.xCrossRefGoogle Scholar
  73. 73.
    E. R. V. Rocha-Júnior, L. S. Marques, M. Babinski, A. J. R. Nardy, A. M. G. Figueiredo, and F. B. Machado, “Sr–Nd–Pb isotopic constraints on the nature of the mantle sources involved in the genesis of the high-Ti tholeiites from northern Paraná Continental Flood Basalts (Brazil),” J. South Am. Earth Sci. 46, 9–25 (2013).CrossRefGoogle Scholar
  74. 74.
    E. R. V. Rocha-Júnior, I. S. Puchtel, L. S. Marques, R. J. Walker, F. B. Machado, A. J. R. Nardy, M. Babinski, and A. M. G. Figueiredo, “Re–Os isotope and highly siderophile element systematics of the Paraná Continental flood basalts (Brazil),” Earth Planet. Sci. Lett. 337–338, 164–173 (2012).CrossRefGoogle Scholar
  75. 75.
    J. K. Rohde, P. Van den Bogaard, K. Hoernle, and R. Werner, “Evidence for an age progression along the Tristan–Gough volcanic track from new 40Ar/39Ar ages on phenocryst phases,” Tectonophysics 604, 60–71 (2013). doi 10.1016/j.tecto.2012.08.026CrossRefGoogle Scholar
  76. 76.
    B. Romanowicz and Y. Gung, “Superplumes from the core–mantle boundary to the base of the lithosphere,” Science 296, 513–516 (2002).CrossRefGoogle Scholar
  77. 77.
    W. W. Sager, “Scientific drilling in the South Atlantic: Rio Grande Rise, Walvis Ridge and surrounding areas,” South Atlantic Workshop, Rio de Janeiro, Brazil, 2014.Google Scholar
  78. 78.
    V. J. M. Salters and A. Sachi-Kocher, “An ancient metasomatic source for the Walvis Ridge basalts fluids,” Chem. Geol. 273, 151–167 (2010).CrossRefGoogle Scholar
  79. 79.
    M. Schimmel, M. Assumpcao, and J. C. Vandecar, “Seismic velocity anomalies beneath SE Brazil from P and S wave travel time inversions,” J. Geophys. Res.: Solid Earth 108 (2003). doi 10.1029/2001JB000187Google Scholar
  80. 80.
    K. Stewart, S. Turner, S. Kelley, C. Hawkesworth, L. Kirstein, and M. Mantovani, “3-D, 40Ar–39Ar geochronology in the Paraná continental flood basalt province,” Earth Planet. Sci. Lett. 143, 95–109 (1996).CrossRefGoogle Scholar
  81. 81.
    M. J. Stica, P. V. Zalán, and A. L. Ferrari, “The evolution of rifting on the volcanic margin of the Pelotas Basin and the contextualization of the Paraná–Etendeka LIP in the separation of Gondwana in the South Atlantic,” Mar. Pet. Geol. 50, 1–21 (2014).CrossRefGoogle Scholar
  82. 82.
    D. S. Thiede and P. M. Vasconcelos, “Paraná flood basalts: Rapid extrusion hypothesis confirmed by new 40Ar/39Ar results,” Geology 38, P. 747–750 (2010).CrossRefGoogle Scholar
  83. 83.
    R. N. Thompson, S. A. Gibson, A, Dickin, and P. M. Smith, “Early Cretaceous basalt and picrite dykes of the Southern Etendeka Region, NW Namibia: Windows into the role of the Tristan mantle plume in Paraná–Etendeka magmatism,” J. Petrol. 42, 2049–2081 (2001).CrossRefGoogle Scholar
  84. 84.
    R. N. Thompson, A. J. V. Riches, P. M. Antoshechkina, D. G. Pearson, G. M. Nowell, C. J. Ottley, A. Dickin, V. L. Hards, A. K. Nguno, and V. Niku-Paavola, “Origin of CFB magmatism: Multi-tiered intracrustal picrite-rhyolite magmatic plumbing at Spitzkoppe, Western Namibia, during Early Cretaceous Etendeka magmatism,” J. Petrol. 48, 1119–1154 (2007).CrossRefGoogle Scholar
  85. 85.
    T. H. Torsvik, S. Rousse, C. Labails, and M. A. Smethurst, “A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin,” Geophys. J. Int. 177, 1315–1333 (2009). doi 10.1111/j.1365-246X.2009.04137.xCrossRefGoogle Scholar
  86. 86.
    R. B. Trumbull, B. Bühn, R. L. Romer, and F. Volker, “The petrology of basanite–tephrite intrusions in the Erongo complex and implications for a plume origin of Cretaceous alkaline complexes in Namibia,” J. Petrol. 44, 93–112 (2003).CrossRefGoogle Scholar
  87. 87.
    R. B. Trumbull, D. L. Reid, C. H. De Beer, and R. L. Romer, “Magmatism and continental breakup at the west margin of southern Africa: A geochemical comparison of dolerite dikes from NW Namibia and the Western Cape,” South Afr. J. Geol. 110, 477–502 (2007). doi 10.2113/gssajg.110.2-3.477CrossRefGoogle Scholar
  88. 88.
    S. Turner, M. Regelous, S. Kelley, C. Hawkesworth, and M. Mantovani, “Magmatism and continental break-up in the South Atlantic: High precision 40Ar–39Ar geochronology,” Earth Planet. Sci. Lett. 121, 333–348 (1994).CrossRefGoogle Scholar
  89. 89.
    N. Ussami, C. A. M. Chaves, L. S. Marques, and M. Ernesto, “Origin of the Rio Grande Rise–Walvis Ridge reviewed integrating palaeogeographic reconstruction, isotope geochemistry and flexural modeling,” in Conjugate Divergent Margins, Vol. 369 of Geol. Soc. London, Spec. Publ., Ed. by W. U. Mohriak, A. Danforth, P. J. Post, D. E. Brown, G. C. Tari, M. Nemcok, and S. T. Sinha (London, 2012). doi 10.1144/SP369.1010.1144/SP369.10Google Scholar
  90. 90.
    M. Wigand, A. K. Schmitt, R. B. Trumbull, and I. M. Villa, “Short-lived magmatic activity in an anorogenic subvolcanic complex: 40Ar/39Ar and ion microprobe U–Pb zircon dating of the Erongo, Damaraland, Namibia,” J. Volcanol. Geotherm. Res. 130, 285–305 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations