, Volume 52, Issue 2, pp 157–172 | Cite as

The Hissar–Alay and the Pamirs: Deep-Seated Structure, Geodynamic Model, and Experimental Evidence

  • M. G. Leonov
  • A. K. Rybin
  • V. Yu. Batalev
  • V. E. Matyukov
  • G. G. Shchelochkov


The structural and geodynamic features of the Pamirs and the Hissar–Alay have been revealed based on geological and geophysical evidence supplemented by experimental data. It has been shown that both the Pamirs and the Hissar–Alay are geodynamic systems, the formation of which is related to interference of two geodynamic regimes: (i) global orogeny covering extensive territories of Eurasia and determining their similarity and (ii) regional regimes differing for the Pamirs and the Alay, which act independently within Central Asian and Apline–Himalayan mobile belts, respectively. The Pamirs do not act as an indentor during the formation of structure of the Hissar–Alay and areas to the north. It is stated that the Pamir–Alay segment of Asia is a reflection of the geodynamic countermotion setting (3D flow of mountain masses) of several distinct segments of the continental lithosphere, while the Pamirs are an intracontinental subduction domain at the surface, which represents a special tectonic–geodynamic type of structures.


geodynamic model deep-seated tectonics structure mobile belt Pamirs Tien Shan 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. I. Aptikaeva, Yu. F. Kopnichev, and V. I. Shevchenko, “Structure of the crust and upper mantle and tectogenesis of the Garm research area, Tajikistan,” Fiz. Zemli, No. 7, 53–64 (1994).Google Scholar
  2. 2.
    E. Argan, Tectonics of Asia (ONTI, Moscow, 1935) [in Russian].Google Scholar
  3. 3.
    G. Sh. Achilov, A. M. Babaev, K. M. Mirzoev, and R. S. Mikhailova, “Seismogenic zones of the Pamirs,” in Geology and Geophysics of Tajikistan, Vol. 1: Earth’s Crust, Tectonic, and Magmatism of the Pamirs (Donish, Dushanbe, 1985), pp. 117–160.Google Scholar
  4. 4.
    M. L. Bazhenov and V. S. Burtman, Structural Arcs of the Alpine Belt: Carpathians, Caucasus, Pamirs (Nauka, Moscow, 1990) [in Russian].Google Scholar
  5. 5.
    Ya. A. Bekker, “Tectonics of the Afghan–Tajik Depression,” Geotectonics 30, 64–70 (1996).Google Scholar
  6. 6.
    Ya. A. Bekker, Yu. F. Konovalov, G. V. Koshlakov, and D. R. Muchaidze, “New data on the crustal structure in Tajikistan,” in Tectonics of Tien Shan and Pamirs, Ed. by I. E. Gubin and S. A. Zakharov (Nauka, Moscow, 1983), pp. 118–123.Google Scholar
  7. 7.
    V. A. Bel’skii, “Some peculiarities of the recent tectocnis of the southwestern Darvaz Range,” Geotektonika, No. 4, 69–784 (1971).Google Scholar
  8. 8.
    R. A. Burwash, “Basement,” in The Encyclopedia of Structural Geology and Plate Tectonics, Ed. by C. Seyfert (Van Nostrand Reinhold, New York, 1987). doi 10.1007/3-540-31080-0_6Google Scholar
  9. 9.
    V. D. Bosov, Tertiary Continental Deposits of Tajikistan (Donish, Dushanbe, 1972) [in Russian].Google Scholar
  10. 10.
    V. I. Budanov, “Modeling of the crust of the Pamirs from geologic-petrologic data,” in Geology and Geophysics of Tajikistan, Vol. 1: Earth’s Crust, Tectonic, and Magmatism of the Pamirs (Donish, Dushanbe, 1985), pp. 15–38.Google Scholar
  11. 11.
    V. S. Burtman, “The problem of formation of the Pamir–Punjab Syntax,” Geotektonika, No. 5, 56–63 (1982).Google Scholar
  12. 12.
    V. S. Burtman, Tien Shan and High Asia: Cenozoic Geodynamics, Ed. by Yu. G. Leonov (GEOS, Moscow, 2012) [in Russian].Google Scholar
  13. 13.
    V. S. Burtman and G. Z. Gurarii, “The nature of folded arcs of the Pamirs and Tien Shan from paleomagnetic data,” Geotektonika, No. 2, 62–67 (1973).Google Scholar
  14. 14.
    Geology and Geophysics of Tajikistan (Donish, Dushanbe, 1985) [in Russian].Google Scholar
  15. 15.
    M. A. Goncharov, “Tectonic flow and deformation of rock massifs,” in Modern Tectonophysics: Methods and Results (Inst. Fiz. Zemli Ross. Akad. Nauk, Moscow, 2011), Vol. 2, pp. 3–18.Google Scholar
  16. 16.
    I. V. Zabelina, I. Yu. Koulakov, and M. M. Buslov, “Deep mechanics in the Kyrgyz Tien Shan orogen (from results of seismic tomography),” Russ. Geol. Geophys. 54, 695–706 (2013).CrossRefGoogle Scholar
  17. 17.
    S. A. Zakharov, “The key problem of tectogenesis with respect to oil and gas explorations in the Tajik Depression and fundamentals of seismotectonic zoning of South Tajikistan,” in Geological Problems of Tajikistan, Ed. by R. B. Baratov (Akad. Nauk Tadzh. SSR, Dushanbe, 1964), pp. 33–78.Google Scholar
  18. 18.
    M. L. Kopp, Lateral Pressure Structures in the Alpine–Himalayan Collisional Belt (Nauchnyi Mir, Moscow, 1997) [in Russian].Google Scholar
  19. 19.
    I. P. Kosminskaya, G. G. Mikhota, and Yu. V. Tulina, “Crustal structure in the Pamir-Alay zone from deep seismic sounding data,” Izv. Akad. Nauk SSSR. Ser. Geofiz., No. 10, 56–65 (1958).Google Scholar
  20. 20.
    K. I. Kuznetsova, “Role of extension factor in orogenesis,” in Problems of the Tectonosphere Evolution, Ed. by V. N. Sholpo (Ob”ed. Inst. Fiz. Zemli Ross. Akad. Nauk, Moscow, 1997), pp. 388–403.Google Scholar
  21. 21.
    K. I. Kuznetsova, N. Kh. Bagmanova, and L.M. Matasova, “The set of seismological parameters and contemporary tectonic movements in the Alpine Foldbelt. Pt. 1. Pamirs and Tien Shan,” Fiz. Zemli, No. 10, 26–40 (1995).Google Scholar
  22. 22.
    Lateral Tectonic Flows in the Lithosphere of the Earth, Ed. by M. G. Leonov (GEOS, Moscow, 2013) [in Russian].Google Scholar
  23. 23.
    M. G. Leonov, “Geodynamics of the South Tien Shan at its post-oceanic evolutionary stage,” in Tectonic Problems of Central Asia (GEOS, Moscow, 2005), pp. 13–60.Google Scholar
  24. 24.
    M. G. Leonov, “Lateral protrusions in the structure of the Earth’s lithosphere,” Geotectonics 42, 327–356 (2008).CrossRefGoogle Scholar
  25. 25.
    M. G. Leonov, Tectonics of the Consolidated Crust (Nauka, Moscow, 2008) [in Russian].Google Scholar
  26. 26.
    M. G. Leonov, A. K. Rybin, V. Yu. Batalev, V. E. Matyukov, and G. G. Shchelochkov, “Tectonic structure and evolution of the Hissar–Alay mountain domain and the Pamirs,” Geotectonics 51, 566–583 (2017).CrossRefGoogle Scholar
  27. 27.
    M. G. Leonov, A. K. Rybin, V. Yu. Batalev, V. E. Matyukov, G. G. Shchelochkov, “Hissar–Alay and the Pamirs: Their junction and position in the system of Central Asian mobile belts” Geotectonics (2018) (in press).Google Scholar
  28. 28.
    L. I. Lobkovskii, Geodynamics of the Spreading Zones, Subduction, and Two-Staged Plate Tectonics (Nauka, Moscow, 1988) [in Russian].Google Scholar
  29. 29.
    A. A. Lukk and V. I. Shevchenko, “Implications of local tectogenesis for the deformation of layered sequences in the Tajik Depression,” Izv., Phys. Solid Earth 40, 897–916 (2004).Google Scholar
  30. 30.
    A. V. Luk’yanov, Plastic Deformations and Tectonic Flow in the Lithosphere (Nauka, Moscow, 1991) [in Russian].Google Scholar
  31. 31.
    V. E. Matyukov, “Magnetitelluric and magnetic-variation observations in the Lay valley area,” in Contemporary Problems of Geodynamics and Geoecology of Intracontinental Orogens: Proceedings of the Fifth International Symposium (Nauchn. Stantsiya Ross. Akad. Nauk, Bishkek, 2011), pp. 51–53.Google Scholar
  32. 32.
    V. E. Matyukov, A. K. Rybin, V. Yu. Batalev, and E. A. Bataleva, “Deep geoelectrical structure of the Pamir-Alay zone,” in Problems of Geodynamics and Geoecology of Intracontinental Orogens: Proceedings of the Sixth International Symposium (Nauchn. Stantsiya Ross. Akad. Nauk, Bishkek, 2014), pp. 200–201.Google Scholar
  33. 33.
    A. V. Mikolaichuk, M. V. Gubrenko, and L. M. Bogomolov, “Fold deformation of a preorogenic peneplain in the recent structure of the Central Tien Shan,” Geotectonics 37, 31–37 (2003).Google Scholar
  34. 34.
    Yu. V. Miller, “Layer-wise and sublayer-wise flow of rocks and its role in structure formation,” Geotektonika, No. 6, 88–96 (1982).Google Scholar
  35. 35.
    Yu. A. Morozov and T. M. Geptner, “Comparison between natural and experimentally reproducible structural ensembles formed under transpression and transtension conditions,” in Problems of the Tectonosphere Evolution, Ed. by V. N. Sholpo (Ob”ed. Inst. Fiz. Zemli Ross. Akad. Nauk, Moscow, 1997), pp. 219–258.Google Scholar
  36. 36.
    P. N. Nikolaev, Methods of Tectono-Dynamic Analysis (Nedra, Moscow, 1992) [in Russian].Google Scholar
  37. 37.
    E. I. Patalakha, “Differential mobility of the jointly deformed heterogeneous geological bodies, its causes and implications: viscosity inversion,” Geotektonika, No. 4, 15–20 (1971).Google Scholar
  38. 38.
    E. I. Patalakha, A. I. Lukienko, and V. V. Gonchar, Tectonic Flows as the Basis for Understanding the Geological Structures (Nats. Akad. Nauk Ukr., Kiev, 1995) [in Russian].Google Scholar
  39. 39.
    Yu. M. Pushcharovskii, V. L. Novikov, A. A. Savel’ev, and V. E. Fadeev, “Heterogeneity of the mantle and convection,” Geotektonika, No. 5, 3–13 (1989).Google Scholar
  40. 40.
    H. Ramberg, Gravity, Deformation and the Earth’s Crust in Theory, Experiment, and Geological Application (Academic Press, London, 1981).Google Scholar
  41. 41.
    Yu. V. Riznichenko, O. V. Soboleva, O. F. Kuchai, P. Mikhailova, and O. N. Vasil’eva, “Seismotectonic deformation of the crust in southern Central Asia,” Izv. Akad. Nauk SSSR. Fiz. Zemli, No. 10, 90–104 (1982).Google Scholar
  42. 42.
    O. M. Rozen and V. S. Fedorovskii, “Collisional granites and granitic-gneiss areals as reflection of vertical accretion processes,” in Vertical Accretion of the Earth’s Crust: Factors and Mechanisms, Ed. by M. G. Leonov (Nauka, Moscow, 2002), pp. 173–201.Google Scholar
  43. 43.
    T. V. Romanyuk and A. V. Tkachev, Geodynamic Scenario of Formation of Largest World Miocene–Quaternary B–Li Provinces, Ed. by D. V. Rundkvist (Svetoch Plyus, Moscow, 2010) [in Russian].Google Scholar
  44. 44.
    S. V. Ruzhentsev, Structural Peculiarities and Formation Mechanism of Detached (Decollement) Nappes, Ed. by A. V. Peive (Nauka, Moscow, 1971) [in Russian].Google Scholar
  45. 45.
    A. K. Rybin, Deep Structure and Contemporary Geodynamics of the Central Tien Shan from Magnetitelluric Sounding Data (Nauchnyi mir, Moscow, 2011) [in Russian].Google Scholar
  46. 46.
    I. Sadybakasov, Neotectonics of High Asia (Nauka, Moscow, 1990) [in Russian].Google Scholar
  47. 47.
    S. F. Skobelev, “Horizontal shortening and development of folds on the Peter the First Range,” Geotektonika, No. 2, 105–119 (1977).Google Scholar
  48. 48.
    Contemporary Geodynamics of Regions of Intracontinental Collisional Orogenesis (Central Asia) (Nauchnyi mir, Moscow, 2005) [in Russian].Google Scholar
  49. 49.
    O. A. Susin and V. E. Verkhoturov, “Degree of knowledge and some problems of deep structure of the Pamirs,” in Geology and Geophysics of Tajikistan (Donish, Dushanbe, 1985), pp. 72–84.Google Scholar
  50. 50.
    E. N. Terekhov, “Middle massifs of the Pamir–Himalayan belt and eastern Baltic Shield: Reality or myth?,” in Structural-Material Complexes and Problems of Precambrian Geodynamics (Inst. Geol. Geokhim. Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2008), pp. 155–159.Google Scholar
  51. 51.
    E. N. Terekhov and A. P. Akimov, “Tectonic position and genesis of jewelry corundum sites in High Asia,” Litosfera, No. 5, 122–140 (2013).Google Scholar
  52. 52.
    V. G. Trifonov, Late Quaternary Tectogenesis (Nauka, Moscow, 1983) [in Russian].Google Scholar
  53. 53.
    V. P. Trubitsin, V. V. Rykov, and A. P. Trubitsin, “Convection and viscosity distribution in the mantle,” Izv., Phys. Solid Earth 33, 173–180 (1997).Google Scholar
  54. 54.
    I. Kh. Khamrabaev, R. A. Akhundzhaev, Yu. N. Zuev, et al., “Generalized model of the crust and upper mantle along the Tashkent–Lake Zorkul geotransect,” Sov. Geol., No. 10, 75–87 (1991).Google Scholar
  55. 55.
    O. K. Chediya and N. G. Utkina, “Recent tectogenesis of the Tien Shan epiplatform orogen,” in Geodynamics of Intracontinental Mountain Regions (Nauka, Novosibirsk, 1990), pp. 46–53.Google Scholar
  56. 56.
    I. G. Shcherba, “Neogene olistostromes of the Darvaz Range,” Geotektonika, No. 5, 97–108 (1975).Google Scholar
  57. 57.
    C. Beaumont, R. A. Jemiesont, M. H. Nguyen, and B. Lee, “Himiayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation,” Nature 414, 738–742 (2001).CrossRefGoogle Scholar
  58. 58.
    J. Bradschaw, J. T. Renouf, and R. T. Taylor, “The development of Brioverian structures and Brioverian. Paleozoic relationships in west Finistère (France),” Geol. Rundsch. 56, 567–596 (1967).CrossRefGoogle Scholar
  59. 59.
    M. Brunel, N. Arnaud, P. Tapponie, Y. Pan, and Y. Wang, “Kongur Shan normal fault: Type example of mountain building assisted by extension (Karakorum fault, eastern Pamir),” Geology 22, 707–710 (1994).CrossRefGoogle Scholar
  60. 60.
    M. A. Edwards and T. M. Harrison, “When did the roof collapse? Late Miocene north-south extension in the high-Himalaya revealed by U–Pb monazite dating of the Khula Kangri granite,” Geology 25, 543–546 (1997).CrossRefGoogle Scholar
  61. 61.
    P. England and G. Houseman, “Extension during continental convergence, with application to the Tibetan Plateau,” J. Geophys. Res., [Solid Earth Planets] 94, 17561–17579 (1989).CrossRefGoogle Scholar
  62. 62.
    W. Gan, P. Zhang, Z. K. Shen, Z. Niu, M. Wang, Y. Wan, D. Zhou, and J. Cheng, “Present-day crustal motion the Tibetan plateau inferred from GPS measurements,” J. Geophys. Res.: Solid Earth 112 (2007). doi 10.1029/2005JB004120Google Scholar
  63. 63.
    T. V. Gerya, L. L. Perchuk, D. D. van Reenen, and C. A. Smit, “Two-dimensional numerical modeling of pressure-temperature-time paths for the exhumation of some granulite faces terrains in the Precambrian,” J. Geodyn. 30, 17–35 (2000).CrossRefGoogle Scholar
  64. 64.
    M. W. Hamburger, D. R. Sarewitz, T. L. Pavlis, and G. A. Popandopulo, “Structural and seismic evidence for intracontinental subduction in the First Range, Central Asia,” Geol. Soc. Am. Bull. 104, 397–408 (1992).CrossRefGoogle Scholar
  65. 65.
    N. Harris and J. Massey, “Decompression and anatexis of Himalayan metapelites,” Tectonics 13, 1537–1546 (1994).CrossRefGoogle Scholar
  66. 66.
    M. P. A. Jackson and C. J. Talbot, “Anatomy of mushroom-shaped diapirs,” J. Struct. Geol. 11, 211–230 (1989).CrossRefGoogle Scholar
  67. 67.
    S.-K. Kufner, B. Schurr, C. Sippl, X. Yuan, L. Ratschbacher, A. Mohammad Akbar, A. Ischuk, S. Murodkulov, F. Schneider, J. Mechie, and F. Tilmann, “Deep India meets deep Asia: Lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia),” Earth Planet. Sci. Lett. 435, 171–184 (2016).CrossRefGoogle Scholar
  68. 68.
    E. Lev, M. D. Long, and R. D. van der Hilst, “Seismic anisotropy from shear-wave splitting in eastern Tibet reveals changes in lithospheric deformation,” Earth Planet. Sci. Lett. 251, 293–304 (2006).CrossRefGoogle Scholar
  69. 69.
    J. Martinod, D. Hatzfeld, J. Brun, P. Davy, and P. Gautier, “Continental collisional, gravity spreading, and kinematics of Aegea and Anatolia,” Tectonics 19, 290–299 (2000).CrossRefGoogle Scholar
  70. 70.
    J. Mechie, X. Yuan, B. Schurr, F. Shneider, M. Gadoev, I. Oimahmadov, U. Abdybachaev, B. Moldobekov, S. Orunbaev, and S. Negmatullaev, “Crustal and uppermost mantle velocity structure along a profile across the Pamir and southern Tien Shan as derived from project TIPAGE wide-angle seismic data,” Geophys. J. Int. 188, 385–407 (2011). doi 10.1111/j.1365-246X.2011.05278.xCrossRefGoogle Scholar
  71. 71.
    S. R. Noble and M. P. Searle, “Age of crustal melting and leucogranite formation from U–Pb zircon and monazite in the Western Himalaya,” Geology 23, 1135–1138 (1995).CrossRefGoogle Scholar
  72. 72.
    T. Raimondo, M. Hand, and W. J. Collins, “Compressional intracontinental orogenes: Ancient and modern perspectives,” Earth-Sci. Rev. 130, 128–153 (2014).CrossRefGoogle Scholar
  73. 73.
    P. Sass, R. Oliver, G. Muñoz, A. Rybin, and V. Batalev, “Magnetotelluric data from the continental collision zone in the Pamir and Tien Shan, Central Asia,” in Contemporary Problems of Geodynamics and Geoecology of Intracontinental Orogens: Proceedings of the Fifth International Symposium (Nauchn. Stantsiya Ross. Akad. Nauk, Bishkek, 2011), p. 326.Google Scholar
  74. 74.
    P. Sass, O. Ritter, L. Ratschbacher, V. Matiukov, J. Tympel, A. Rybin, and V. Batalev, “Resistivity structure underneath the Pamir and Southern Tian Shan,” Geophys. J. Int. 198, 564–579 (2013). doi 10.1093/gji/ggu146CrossRefGoogle Scholar
  75. 75.
    F. M. Schneider, X. Yuan, B. Schurr, J. Mechie, C. Sippl, C. Haberland, V. Minaev, I. Oimahmadov, M. Gadoev, N. Radjabov, U. Abdybachaev, S. Orunbaev, and S. Negmatullaev, “Seismic imaging of subducting continental lower crust beneath the Pamir,” Earth Planet. Sci. Lett. 375, 101–112 (2013). doi 10.1016/j.epsl.2013.05.015CrossRefGoogle Scholar
  76. 76.
    B. Schurr, X. Yuan, F. Schneider, C. Sippl, J. Mechie, V. Minaev, U. Abdybachaev, I. Oimahmadov, M. Gadoev, and S. Negmatullaev, “Seismicity and lithospheric structure in the Pamir–Hindu Kush–Tien Shan region from TIPAGE seismological data (solicited),” Geophys. Res. Abstr. 13, EGU2011-4822 (2011).Google Scholar
  77. 77.
    B. Schurr, L. Ratschbacher, J. Sippel, R. Gloaguen, X. Yuan, and J. Mechie, “Seismotectonics of the Pamir,” Tectonics 33, 1501–1518 (2014). 10.1002/2014TC003576CrossRefGoogle Scholar
  78. 78.
    C. Sippl, F. Schneider, B. Schurr, X. Yuan, J. Mechie, M. Gadoev, I. Oimahmadov, U. Abdybachaev, S. Negmatullaev, and V. Minaev, “Analysis of local seismicity, crustal and upper mantle structure in Central Asia using data recorded by a seismological network in the Pamir and Tien Shan,” 2010 AGU Fall Meeting, San Francisco, 2010, Abstract T43B-2222.Google Scholar
  79. 79.
    H. A. Smith, C. P. Chamberlain, and P. K. Zeitler, “Documentation of Neogene regional metamorphism in the Himalayas of Pakistan using U-Pb monazite,” Earth Planet. Sci. Lett. 113, 93–105 (1992).CrossRefGoogle Scholar
  80. 80.
    R. Stiron, V. Taylor, and M. Murphy, “Himalayan orogen-parallel extension from GPS geodesy and structural geology,” 5th International Symposium of Tibetan Plateau, Beijing, China, 2009, pp. 52–53.Google Scholar
  81. 81.
    M. R. Strecker, G. E. Hilley, J. R. Arrowsmith, and I. Coutand, “Differential structural and geomorphic mountain-front evolution in an active continental collision zone: The northwest Pamir, southern Kyrgyzstan,” Geol. Soc. Am. Bull. 115, 166–181 (2003).CrossRefGoogle Scholar
  82. 82.
    M. R. Strecker, W. Frisch, M. W. Hamburger, L. Ratschbacher, S. Semiletkin, A. Zamoruyev, and N. Sturchio, “Quaternary deformation in the Eastern Pamirs, Tadzhikistan and Kyrgyzstan,” Tectonics 14, 1061–1079 (1995).CrossRefGoogle Scholar
  83. 83.
    P. Štipska, R. Powell, and K. Schulman, “Reading the metamorphic record: Application to orogenic lower and middle crust,” Geol. Fr., No. 2, 162 (2007).Google Scholar
  84. 84.
    M. Taylor, A. Yin, F. J. Ryerson, P. Kapp, and L. Ding, “Conjugate strike-slip faulting along the Bangong–Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan plateau,” Tectonics 4 (2003). doi 10.1029/2002TC001361Google Scholar
  85. 85.
    Tectonics of Northern, Central and Eastern Asia (VSEGEIPrinting House, St. Petersburg, 2014).Google Scholar
  86. 86.
    A. Yin and T. M. Harrison, “Geologic evolution of the Himalayan–Tibetan orogen,” Ann. Rev. Earth Planet. Sci. 28, 211–280 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. G. Leonov
    • 1
  • A. K. Rybin
    • 2
  • V. Yu. Batalev
    • 1
  • V. E. Matyukov
    • 2
  • G. G. Shchelochkov
    • 1
    • 2
  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Scientific Station of the Russian Academy of SciencesBishkekKyrgyzstan

Personalised recommendations