Advertisement

Geotectonics

, Volume 52, Issue 2, pp 225–239 | Cite as

Carboniferous Granitoid Magmatism of Northern Taimyr: Results of Isotopic-Geochemical Study and Geodynamic Interpretation

  • M. Yu. Kurapov
  • V. B. Ershova
  • A. A. Makariev
  • E. V. Makarieva
  • A. K. Khudoley
  • M. V. Luchitskaya
  • A. V. Prokopiev
Article

Abstract

Data on the petrography, geochemistry, and isotopic geochronology of granites from the northern part of the Taimyr Peninsula are considered. The Early–Middle Carboniferous age of these rocks has been established (U–Pb, SIMS). Judging by the results of 40Ar/39Ar dating, the rocks underwent metamorphism in the Middle Permian. In geochemical and isotopic composition, the granitic rocks have much in common with evolved I-type granites. This makes it possible to specify a suprasubduction marginal continental formation setting. The existence of an active Carboniferous margin along the southern edge of the Kara Block (in presentday coordinates) corroborates the close relationship of the studied region with the continent of Baltia.

Keywords

Taimyr syncollisional granites Permian metamorphism active margin I-type granite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. V. Andreeva and E. P. Izokh, Intrusive Series of the Magadan Massif and Criteria of Their Identification (SVKNII DVO AN SSSR, Magadan, 1990) [in Russian].Google Scholar
  2. 2.
    V. A. Vernikovskii, Geodynamic Evolution of the Taimyr Folded Zone (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1996) [in Russian].Google Scholar
  3. 3.
    V. A. Vernikovsky, E. B. Sal’nikova, A. B. Kotov, V. A. Ponomarchuk, V. P. Kovach, V. A. Travin, S. Z. Yakovleva, and N. G. Berezhnaya, “The age of postcollisional granitoids of the northern Taimyr: U–Pb, Sm–Nd, Rb–Sr, and Ar–Ar Data,” Dokl. Earth Sci. 363, 1191–1194 (1998).Google Scholar
  4. 4.
    State Geological Map of Russian Federation. Scale 1: 1000000 (Third Generation). Sheet T-45–48, Cape Chelyuskin. Explanatory Note, Ed. by A. A. Makar’ev (Kartfabrika VSEGEI, St. Petersburg, 2013) [in Russian].Google Scholar
  5. 5.
    A. V. Grebennikov, “A-type granites and related rocks: Petrogenesis and classification,” Russ. Geol. Geophys. 55, 1074–1086 (2014).CrossRefGoogle Scholar
  6. 6.
    L. A. Daragan-Sushchova, O. V. Petrov, Yu. I. Daragan-Sushchov, and M. A. Vasil’ev, “Geological structure peculiarities of the North Kara shelf from seismic data,” Reg. Geol. Metallog., No. 54, 5–16 (2013).Google Scholar
  7. 7.
    V. B. Ershova, A. K. Khudoley, and A. V. Prokopiev, “Reconstruction of provenances and Carboniferous tectonic events in the north-east Siberian Craton framework according to U–Pb dating of detrital zircons,” Geotectonics 47, 93–100 (2013).CrossRefGoogle Scholar
  8. 8.
    L. P. Zonenshain, M. I. Kuz’min, and L. M. Natapov, Plate Tectonics of the USSR Territory, Vol. II (Nedra, Moscow, 1990) [in Russian].Google Scholar
  9. 9.
    K. C. Ivanov, V. A. Kontorovich, V. N. Puchkov, Yu. N. Fedorov, and Yu. V. Erokhin, “Tectonics of the Urals and West Siberia basement: Main features of geological structure and evolution,” Geol. Miner.-Syr’evye Resur. Sib., No. 2., 22–35 (2014).Google Scholar
  10. 10.
    M. V. Luchitskaya, S. D. Sokolov, A. B. Kotov, L. M. Natapov, E. A. Belousova, and S. M. Katkov, “Late Paleozoic granitic rocks of the Chukchi Peninsula: Composition and location in the structure of the Russian Arctic,” Geotectonics 49, 243–268 (2015).CrossRefGoogle Scholar
  11. 11.
    D. B. Metelkin, V. A. Vernikovsky, and A. Yu. Kazansky, “Tectonic evolution of the Siberian paleocontinent from the Neoproterozoic to the Late Mesozoic: Paleomagnetic record and reconstructions,” Russ. Geol. Geophys. 53, 883–899 (2012).CrossRefGoogle Scholar
  12. 12.
    A. V. Prokopiev, V. B. Ershova, E. L. Miller, and A. K. Khudoley, “Early Carboniferous paleogeography of the northern Verkhoyansk passive margin as derived from U–Pb dating of detrital zircons: Role of erosion products of the Central Asian and Taimyr–Severnaya Zemlya fold belts,” Russ. Geol. Geophys. 54, 1195–1204 (2013).CrossRefGoogle Scholar
  13. 13.
    V. N. Puchkov, Geology of the Urals and Cis-Uralian Region: Topical Problems of Stratigraphy, Tectonics, Geodynamics, and Metallogeny (DizainPoligrafServis, Ufa, 2010) [in Russian].Google Scholar
  14. 14.
    V. M. Savatenkov, I. M. Morozova, and L. K. Levsky, “Behavior of the Sm–Nd, Rb–Sr, K–Ar, and U–Pb isotopic systems during alkaline metasomatism: Fenites in the outer-contact zone of ultramafic-alkaline intrusion,” Geochem. Int. 42, 899–920 (2004).Google Scholar
  15. 15.
    A. V. Travin, D. S. Yudin, A. G. Vladimirov, S. V. Khromykh, N. I. Volkova, A, Mekhonoshin, and T. B. Kolotilina, “Thermochronology of the Chernorud granulite zone, Ol’khon region, Western Baikal area,” Geochem. Int. 47, 1107–1124 (2009).CrossRefGoogle Scholar
  16. 16.
    R. L. Armstrong, W. H. Taubeneck, and P. O. Hales, “Rb–Sr and K–Ar geochronometry of Mesozoic granitic rocks and their Sr isotopic composition, Oregon, Washington, and Idaho,” Geol. Soc. Am. Bull. 88, 397–411 (1977).CrossRefGoogle Scholar
  17. 17.
    L. P. Black, S. L. Kamo, C. M. Allen, J. N. Heinikoff, D. W. Davis, J. Russel, R. J. Korsch, and C. Foudonlis, “TEMORA 1: A new zircon standard for U–Pb geochronology,” Chem. Geol. 200, 155–170 (2003).CrossRefGoogle Scholar
  18. 18.
    B. W. Chappell and A. J. R. White, “I- and S-type granites in the Lachlan Fold Belt,” Trans. R. Soc. Edinburgh: Earth Sci. 83, 1–26 (1992).CrossRefGoogle Scholar
  19. 19.
    B. W. Chappell and A. J. R. White, “Two contrasting granite types: 25 years later,” Aust. J. Earth Sci. 48, 489–500 (2001).CrossRefGoogle Scholar
  20. 20.
    V. B. Ershova, A. V. Prokopiev, and A. K. Khudoley, “Integrated provenance analysis of Carboniferous deposits from Northeastern Siberia: Implication for the late Paleozoic history of the Arctic,” J. Asian Earth Sci. 109, 38–49 (2015).CrossRefGoogle Scholar
  21. 21.
    B. R. Frost, C. G. Barnes, and W. J. Collins, “A geochemical classification for granitic rocks,” J. Petrol. 42, 2033–2048 (2001).CrossRefGoogle Scholar
  22. 22.
    T. M. Harrison, I. Duncan, and I. McDougall, “Diffusion of 40Ar in biotite–temperature, pressure, and compositional effects,” Geochim. Cosmochim. Acta 49, 2461–2468 (1985).CrossRefGoogle Scholar
  23. 23.
    K. V. Hodges, “Geochronology and thermochronology in orogenic system,” in The Crust, Vol. 3 of Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier, Oxford, 2004), pp. 263–292.Google Scholar
  24. 24.
    D. K. Holm and R. K. Dokka, “Interpretation and tectonic implications of cooling histories: An example from the Black Mountains, Death Valley extended terrane, California,” Earth Planet. Sci. Lett. 116, 63–80 (1993).CrossRefGoogle Scholar
  25. 25.
    P. W. O. Hoskin and U. Schaltegger, “The composition of zircon and igneous and metamorphic petrogenesis,” in Zircon, Vol. 53 of Rev. Mineral. Geochem., Ed. by J. M. Hanchar and P. W. O. Hoskin (2003), pp. 27–62.Google Scholar
  26. 26.
    Å. Johansson, H. Maluski, and D. G. Gee, “Ar–Ar dating of Caledonian and Grenvillian rocks from northeasternmost Svalbard–Evidence of two stages of Caledonian tectonothermal activity in the high Arctic,” Nor. Geol. Tidsskr. 81, 263–281 (2001).Google Scholar
  27. 27.
    C. T. A. Lee, D. M. Morton, R. W. Kistler, and A. K. Baird, “Petrology and tectonics of Phanerozoic continent formation: From island arcs to accretion and continental arc magmatism,” Earth. Planet. Sci. Lett. 263, 370–387 (2007).CrossRefGoogle Scholar
  28. 28.
    H. Lorenz, D. G. Gee, and A. Simonetti, “Detrital zircon ages and provenance of the Late Neoproterozoic and Palaeozoic successions on Severnaya Zemlya, Kara Shelf: A tie to Baltica,” Norw. J. Geol. 88, 235–258 (2008).Google Scholar
  29. 29.
    K. R. Ludwig, SQUID 1.00, A User’s Manual, No. 2 of Berkeley Geochronology Center Special Publication (Berkeley Geochronol. Center, Berkeley, Calif., 2000).Google Scholar
  30. 30.
    K. R. Ludwig, ISOPLOT 3.00. A User’s Manual, No. 4 of Berkeley Geochronology Center Special Publication (Berkeley Geochronol. Center, Berkeley, Calif., 2003).Google Scholar
  31. 31.
    J. Mao, Z. Li, X. Zhao, and J. Chin, “Geochemical characteristics, cooling history and mineralization significance of Zhangtiantang pluton in South Jiangxi Province, P.R. China,” Chin. J. Geochem. 29, 53–64 (2010).CrossRefGoogle Scholar
  32. 32.
    W. F. McDonough and S. S. Sun, “Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Vol. 42 of Geol. Soc. London, Spec. Publ., Ed. by A. D. Saunders and M. J. Norry (London, 1989), pp. 313–345.Google Scholar
  33. 33.
    D. V. Metelkin, V. A. Vernikovsky, A. Yu. Kazansky, O. K. Bogolepova, and A. P. Gubanov, “Paleozoic history of the Kara microcontinent and its relation to Siberia and Baltica: Paleomagnetism, paleogeography and tectonic,” Tectonophysics 398, 225–243 (2005).CrossRefGoogle Scholar
  34. 34.
    B. Natal’in, J. M. Amato, J. Toro, and J. E. Wright, “Paleozoic rocks of northern Chukotka Peninsula, Russian Far East: Implications for the tectonic of Arctic region,” Tectonics 18, 977–1003 (1999).CrossRefGoogle Scholar
  35. 35.
    J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace element discrimination diagrams for the tectonic interpretation of granitic rocks,” J. Petrol. 25, 956–983 (1984).CrossRefGoogle Scholar
  36. 36.
    W. S. Pitcher, “The nature, ascent and emplacement of granitic magmas,” J. Geol. Soc. (London, U. K.) 136, 627–662 (1979).CrossRefGoogle Scholar
  37. 37.
    T. W. Ruks, S. J. Piercey, J. J. Ryan, M. E. Villeneuve, and R. A. Creaser, “Mid- to late Paleozoic K-feldspar augen granitoids of the Yukon-Tanana terrane, Yukon, Canada: Implications for crustal growth and tectonic evolution of the northern Cordillera,” Geol. Soc. Am. Bull. 118, 1212–1231 (2006).CrossRefGoogle Scholar
  38. 38.
    T. E. Waight, D. Frei, and M. Storey, “Geochronological constraints on granitic magmatism, deformation, cooling and uplift on Bornholm, Denmark,” Bull. Geol. Soc. Den. 60, 23–46 (2012).Google Scholar
  39. 39.
    J. B. Whalen, K. L. Currie, and B. W. Chappell, “A-type granites: Geochemical characteristics, discrimination and petrogenesis,” Contrib. Mineral. Petrol. 95, 407–419 (1987).CrossRefGoogle Scholar
  40. 40.
    I. S. Williams, “U–Th–Pb geochronology by ion microprobe: Applications of microanalytical techniques to understanding mineralizing processes,” Rev. Econ. Geol. 7, 1–35 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. Yu. Kurapov
    • 1
  • V. B. Ershova
    • 1
  • A. A. Makariev
    • 2
  • E. V. Makarieva
    • 2
  • A. K. Khudoley
    • 1
  • M. V. Luchitskaya
    • 3
  • A. V. Prokopiev
    • 4
  1. 1.Geological FacultySt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Polar Marine Geosurvey ExpeditionSt. PetersburgRussia
  3. 3.Geological InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Diamond and Precious Metal Geology Institute, Siberian BranchRussian Academy of SciencesYakutskRussia

Personalised recommendations