, Volume 51, Issue 6, pp 625–652 | Cite as

Paleostress analysis of the brittle deformations on the northwestern margin of the Red Sea and the southern Gulf of Suez, Egypt

  • Kh. S. ZakyEmail author


Shear fractures, dip-slip, strike-slip faults and their striations are preserved in the pre- and syn-rift rocks at Gulf of Suez and northwestern margin of the Red Sea. Fault-kinematic analysis and paleostress reconstruction show that the fault systems that control the Red Sea–Gulf of Suez rift structures develop in at least four tectonic stages. The first one is compressional stage and oriented NE–SW. The average stress regime index R' is 1.55 and SHmax oriented NE–SW. This stage is responsible for reactivation of the N–S to NNE, ENE and WNW Precambrian fractures. The second stage is characterized by WNW dextral and NNW to N–S sinistral faults, and is related to NW–SE compressional stress regime. The third stage is belonging to NE–SW extensional regime. The SHmax is oriented NW–SE parallel to the normal faults, and the average stress regime R' is equal 0.26. The NNE–SSW fourth tectonic stage is considered a counterclockwise rotation of the third stage in Pliocene-Pleistocene age. The first and second stages consider the initial stages of rifting, while the third and fourth represent the main stage of rifting.


Red Sea Gulf of Suez paleostress stress regime fractures slip-faults 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Abd El-Wahed, “Pan-African strike-slip tectonics of Wadi El-Dabbah area, north Sibai core complex, central Eastern Desert, Egypt,” Ann. Egypt. Geol. Surv. 29, 1–36 (2007).Google Scholar
  2. 2.
    M. A. Abd El-Wahed, “Thrusting and transpressional shearing in the Pan-African nappe southwest El-Sibai core complex, central Eastern Desert, Egypt,” J. Afr. Earth Sci. 50, 16–36 (2008).CrossRefGoogle Scholar
  3. 3.
    M. A. Abd El-Wahed, “The role of the Najd fault system in the tectonic evolution of the Hammamat molasses sediments, Eastern Desert, Egypt,” Arab. J. Geosci. 3 (2009). doi 10.1007/s12517-008-0030-0Google Scholar
  4. 4.
    M. A. Abd El-Wahed and M. M. Abu Anbar, “Synoblique convergent and extensional deformation and metamorphism in the Neoproterozoic rocks along Wadi Fatira shear zone, northern Eastern Desert, Egypt,” Arab. J. Geosci. 2, 29–52 (2009).CrossRefGoogle Scholar
  5. 5.
    M. A. Abd El-Wahed, M. Ashmawy, and H. Tawfik, “Structural setting of Cretaceous pull-apart basins and Miocene extensional folds in the Quseir–Umm Gheig region, northwestern Red Sea, Egypt,” Lithosphere 2, 13–32 (2010).CrossRefGoogle Scholar
  6. 6.
    T. M. Abd El-Razik, “Stratigraphy of the sedimentary cover of the Anz-Atshan, south Duwi district,” Bull. Fac. Sci., Cairo Univ. 431, 135–179 (1967).Google Scholar
  7. 7.
    M. M. Abdeen, A. A. Dardir, and R. O. Greiling, “Geological and structural evolution of the Wadi Queih Area (N Quseir), Pan-African basement of the Eastern Desert of Egypt,” Zentralbl. Geol. Palaontol. 1, 2653–2659 (1992).Google Scholar
  8. 8.
    M. K. Akaad and A. M. Noweir, “Geology and lithostratigraphy of the Arabian desert orogenic belt between latitude 25° 35’ and 26° 30’,” in Evolution and Mineralization of the Arabian Nubian Shield, Ed. by S. A. Tahoon and P. A. Cooray (Permagon Press, New York, 1980), Vol. 4, pp. 127–135.CrossRefGoogle Scholar
  9. 9.
    A. Allam, “A lithostratigraphical and structural study on Gebel El Zeit area, Gulf of Suez, Egypt,” J. Afr. Earth Sci. 7, 933–944 (1988).CrossRefGoogle Scholar
  10. 10.
    D. C. Almond, “Geological evolution of the Arabo-Nubian dome,” Tectonophysics 131, 301–332 (1986).CrossRefGoogle Scholar
  11. 11.
    J. Angelier, “Fault slip analysis and paleostress reconstruction,” in Continental Deformation, Ed. by L. Hancock (Pergamon, Oxford, 1994), pp. 101–120.Google Scholar
  12. 12.
    J. Angelier and P. Mechler, “Sur une methode graphique de recherche des contraintes principales egalement utilisable en tectonique et en seismologie: La methode des diedres droits,” Bull. Soc. Geol. Fr. 19, 1309–1318 (1977).CrossRefGoogle Scholar
  13. 13.
    A. Ben-Menahem, A. Nur, and M. Vered, “Tectonics, seismicity and structure of the Afro-Eurasian junction–the breaking of an incoherent plate,” Phys. Earth Planet. Inter. 12, 1–50 (1976).CrossRefGoogle Scholar
  14. 14.
    A. Bojar, H. Fritz, S. Kargl, and W. Unzog, “Phanerozoic tectonothermal history of the Arabian-Nubian Shield in the Eastern Desert of Egypt: Evidence from fission track and paleostress data,” J. Afr. Earth Sci. 34, 191–202 (2002).CrossRefGoogle Scholar
  15. 15.
    W. Bosworth, “Geometry of propagating continental rifts”, Nature 316, 625–627 (1985).CrossRefGoogle Scholar
  16. 16.
    W. Bosworth, “A high-strain rift model for the southern Gulf of Suez (Egypt),” in Hydrocarbon Habitat in Rift Basins, Vol. 80 of Geol Soc. London, Spec. Pap., Ed. by J. J. Lambiase (London, 1995), pp. 75–112.Google Scholar
  17. 17.
    W. Bosworth and K. McClay, “Structural and stratigraphic evolution of the Gulf of Suez rift, Egypt: A synthesis,” in Peri-TethysMemoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins, Vol. 186 of Mem. Mus. Natl. Hist. Nat., Ed. by P. A. Ziegler, W. Cavazza, A. H. F. Robertson, and S. Crasquin-Soleau (Paris, 2001), pp. 567–606.Google Scholar
  18. 18.
    W. Bosworth and M. R. Strecker, “Stress field changes in the Afro-Arabian rift system during the Miocene to recent period,” Tectonophyscis 278, 47–62 (1997).CrossRefGoogle Scholar
  19. 19.
    W. Bosworth and M. Taviani, “Late Quaternary reorientation of stress field and extension direction in the southern Gulf of Suez, Egypt: Evidence from uplifted coral terraces, mesoscopic fault arrays and borehole breakouts,” Tectonics 15, 791–802 (1996).CrossRefGoogle Scholar
  20. 20.
    W. Bosworth, P. Crevello, R. D. Winn, and J. Steinmetz, “Structure, sedimentation, and basin dynamics during rifting of the Gulf of Suez and northwestern Red Sea,” in Sedimentation and Tectonics of Rift Basins: Red Sea–Gulf of Aden, Ed. by B. H. Purser and D. W. J. Bosence, (Chapman and Hall, London, 1998), pp. 77–96.CrossRefGoogle Scholar
  21. 21.
    W. Bosworth, M. R. Strecker, and P. M. Blisniuk, “Integration of East African paleo and present-day stress data: Implications for continental stress field dynamics,” J. Geophys. Res.: Solid Earth 97, 11851–11865 (1992).CrossRefGoogle Scholar
  22. 22.
    P. F. Burollet, J. Bolze, and P. Ott d’Estevou, “Sedimentology and tectonics of the Gharamul area,” Egyptian General Petroleum Corporation, Sixth Exploration Seminar, Cairo, Egypt, 1982 (Cairo, 1982), p. 1.Google Scholar
  23. 23.
    C. G. Chase, “Plate kinematics: The Americas, East Africa, and the rest of the world,” Earth Planet. Sci. Lett. 37, 355–368 (1978).CrossRefGoogle Scholar
  24. 24.
    J. Chorowicz, J. Fournier, and G. Vidal, “Paleostress orientation and model of the rift development in east Africa”, Geol. J. 22, 495–513 (1987).CrossRefGoogle Scholar
  25. 25.
    J. Chorowicz, B. Collet, F. Bonavia, and T. Korme, “Left-lateral strike-slip tectonics and gravity induced individualisation of wide continental blocks in the western Afar margin,” Eclog. Geol. Helv. 92, 149–158 (1999).Google Scholar
  26. 26.
    D. Chu and R. G. Gordon, “Current plate motions across the Red Sea,” Geophys. J. Int. 135, 313–328 (1998).CrossRefGoogle Scholar
  27. 27.
    D. Q. Coffield and S. Schamel, “Surface expression of an accommodation zone within the Gulf of Suez rift, Egypt”, Geology 17, 76–79 (1989).CrossRefGoogle Scholar
  28. 28.
    R. G. Coleman, “Geologic background of the Red Sea,” in Initial Reports of the Deep Sea Drilling Project 23, Ed. by R. B. Whitmarsh, O. E. Weser, and D. A. Ross (Government Printing Office, Washington, 1974), pp. 813–819.Google Scholar
  29. 29.
    R. G. Coleman, Geologic Evolution of the Red Sea, Vol. 24 of Oxford Monographs on Geology and Geophysics (Oxford Univ. Press, Oxford, 1993).Google Scholar
  30. 30.
    D. Delvaux, “The TENSOR program for paleostress reconstruction: Examples from the east African and the Baikal rift zones,” Abstr. Suppl. No. 1 to Terra Nova 5, 216 (1993).Google Scholar
  31. 31.
    D. Delvaux and B. Sperner, “Stress tensor inversion from fault kinematic indicators and focal mechanism data: The TENSOR program,” in New Insights into Structural Interpretation and Modeling, Vol. 212 of Geol. Soc. London, Spec. Publ. (London, 2003), pp. 75–100.Google Scholar
  32. 32.
    D. Delvaux, K. Levi, R. Kajara, and J. Sarota, “Cenozoic paleostress and kinematic evolution of the Rukwae North Malawi rift valley (East African rift system),” Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine 16, 383–406 (1992).Google Scholar
  33. 33.
    W. M. Dunne and P. L. Hancock, “Paleostress analysis of small-scale brittle structures,” in Continental Deformation, Ed. by P. L. Hancock (Pergamon, Oxford, 1994), pp. 101–120.Google Scholar
  34. 34.
    E. El Shazly, I. El Kassas, and M. Moustafa, “Comparative fracture analysis and its relation to radioactivity in the pink granite of Um Had pluton, Central Eastern Desert, Egypt,” Egypt. J. Geol. 23, 95–110 (1979).Google Scholar
  35. 35.
    S. M. El-Rabaa, M. S. Al-Shumaimri, and A. T. Al-Mishwat, “Fate of the Najd fault system in northwestern Saudi Arabia and southwestern Jordan,” Gondwana Res. 4, 164–165 (2001).CrossRefGoogle Scholar
  36. 36.
    A. L. Evans, “Neogene tectonic and stratigraphic events in the Gulf of Suez rift area, Egypt,” Tectonophysics 153, 235–247 (1988).CrossRefGoogle Scholar
  37. 37.
    Y. Eyal, “Stress field fluctuations along the Dead Sea Rift since the Middle Miocene,” Tectonics 15, 157–170 (1996).CrossRefGoogle Scholar
  38. 38.
    J. E. Faulds and R. J. Varga, “The role of accommodation zones and transfer zones in the regional segmentation of extended terranes,” in Accommodation Zones and Transfer Zones: The Regional Segmentation of the Basin and Range Province, Vol. 323 of Geol. Soc. Am., Spec. Pap., Ed. by J. E. Faulds and J. H. Stewart (1998), pp. 1–46.Google Scholar
  39. 39.
    Q. J. Fisher and R. J. Knipe, “The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf,” Mar. Pet. Geol. 18, 1063–1081 (2001).CrossRefGoogle Scholar
  40. 40.
    H. Fossen, R. A. Schultz, Z. K. Shipton, and K. Mair, “Deformation bands in sandstone: A review,” J. Geol. Soc. (London, U. K.) 164, 755–769 (2007).CrossRefGoogle Scholar
  41. 41.
    R. Freund, “Plate tectonics of the Red Sea and Africa,” Nature 228, 453 (1970).CrossRefGoogle Scholar
  42. 42.
    Z. Garfunkel and Y. Bartov, “The tectonics of the Suez rift,” Geol. Surv. Isr. Bull. 71, 44–50 (1977).Google Scholar
  43. 43.
    M. P. Golombek, G. E. McGill, and L. Brown, “Tectonic and geologic evolution of the Espanola basin, Rio Grande rift: Structure, rate of extension, and relation to the state of stress in the western united states,” Tectonophysics 94, 483–507 (1983).CrossRefGoogle Scholar
  44. 44.
    R. Guiraud, Y. Bellion, J. Benkhelil, and C. Moreau, “Post-Hercynian tectonics in northern and western Africa,” Geol. J. 22, 433–466 (1987).CrossRefGoogle Scholar
  45. 45.
    R. Heath, S. Vanstone, J. Swallow, M. Ayyad, M. Amin, P. Huggins, R. Swift, I. Warburton, K. McClay, and A. Younis, “Renewed exploration in the offshore north Red Sea region, Egypt,” Proceeding of the 14th Petroleum Conference, Egyptian General Petroleum Corporation, Cairo, Egypt, 1998 (Cairo, 1998), pp. 16–34.Google Scholar
  46. 46.
    M. R. Hempton, “Constraints on Arabian plate motion and extensional history of the Red Sea,” Tectonics 6, 687–705 (1987).CrossRefGoogle Scholar
  47. 47.
    P. Y. Huang and S. C. Solomon, “Centroid depths and mechanisms of mid-ocean ridge earthquakes in the Indian Ocean, Gulf of Aden, and Red Sea,” J. Geophys. Res., [Solid Earth Planets] 92, 0148–0227 (1987). doi 10.1029/JB092iB02p01361Google Scholar
  48. 48.
    P. Huchon and K. Khanbari, “Rotation of the syn-rift stress field of the northern Gulf of Aden margin, Yemen,” Tectonophysics 164, 147–166 (2003).CrossRefGoogle Scholar
  49. 49.
    W. F. Hume, J. C. Magdwick, F. W. Moon, and H. Sadek, “Preliminary geological report on Gebel Tanka area,” Pet. Res. Bull. 4 (1920).Google Scholar
  50. 50.
    J. H. Illies and G. Greiner, “Rhine Graben and the Alpine system,” Geol. Soc. Am. Bull. 89, 770–782 (1978).CrossRefGoogle Scholar
  51. 51.
    B. Issawi, M. Francis, M. El Hinnawi, and A. Mehanna, Contribution to the Structure and Phosphate Deposites of Quseir Area Vol. 50 of Geol. Surv. Egypt Pap. (1969).Google Scholar
  52. 52.
    J. J. Jarrige, P. Ott d’Estevou, P. F. Burollet, P. F. Icart, C. Montenat, P. Prat, J. P. Richert, J. P. Sehans, and J. P. Thiriet, “Inherited discontinuities and Neogene structure: The Gulf of Suez and the northwestern edge of the Red Sea,” Philos. Trans. R. Soc. London 317, 129–139 (1986).CrossRefGoogle Scholar
  53. 53.
    J. J. Jarrige, P. Ott d’Estevou, P. F. Burollet, C. Montenat, P. Prat, J. P. Richert, and J. P. Thiriet, “The multistage tectonic evolution of the Gulf of Suez and northern Red Sea continental rift from field observations,” Tectonics 9, 441–465 (1990).CrossRefGoogle Scholar
  54. 54.
    F. Jestin, P. Huchon, and J. M. Gaulier, “The Somalia plate and the East African Rift System: Present-day kinematics,” Geophys. J. Int. 116, 637–654 (1994).CrossRefGoogle Scholar
  55. 55.
    S. Joffe and Z. Garfunkel, “Plate kinematics of the circum Red Sea–a reevaluation,” Tectonophysics 141, 5–22 (1987).CrossRefGoogle Scholar
  56. 56.
    P. R. Johnson and F. Kattan, “Oblique sinistral transpression in the Arabian Shield: The timing and kinematics of a Neoproterozoic suture zone,” Precambrian Res. 107, 117–138 (2001).CrossRefGoogle Scholar
  57. 57.
    M. T. Kerdany and O.H. Cherif, “Mesozoic,” in The Geology of Egypt, Ed. by R. Said, (Balkema, Rotterdam, The Netherlands, 1990), pp. 407–449.Google Scholar
  58. 58.
    S. M. Khalil and K. McClay, “Extensional fault related folding, northwestern Red Sea, Egypt,” J. Struct. Geol. 24, 743–762 (2002).CrossRefGoogle Scholar
  59. 59.
    X. Le Pichon and J. Francheteau, “A plate tectonic analysis of the Red Sea—Gulf of Aden area,” Tectonophysics 46, 369–406 (1987).CrossRefGoogle Scholar
  60. 60.
    B. Lund and J. Townend, “Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor,” Geophys. J. Int. 170, 1328–1335 (2007).CrossRefGoogle Scholar
  61. 61.
    D. P. McKenzie, D. Davies, and P. Molnar, “Plate tectonics of the Red Sea and East Africa,” Nature 226, 243–248 (1970).CrossRefGoogle Scholar
  62. 62.
    W. M. Meshref, “Tectonic framework,” in The Geology of Egypt, Ed. by R. Said (Balkema, Rotterdam, 1990), pp. 112–155.Google Scholar
  63. 63.
    C. Montenat, P. Ott d’Estevou, and B. H. Purser, “Tectonic and sedimentary evolution of the Gulf of Suez and the northwestern Red Sea: A review,” in Geological Studies of the Gulf of Suez, the Northwestern Red Sea Coasts, Tectonic and Sedimentary Evolution of a Neogene Rift, Vol. 10 of Doc. Trav. Inst. Geol. Albert de Lapparent, Ed. by C. P. Montenat (1986), pp. 7–18.Google Scholar
  64. 64.
    C. Montenat, P. Ott d’Estevou, B. Purser, P. F. Burollet, J. J. Jarriage, F. Orszag-Sperber, E. Philobbos, J. C. Plaziat, P. Prat, J. P. Richert, N. Roussel, and J. P. Thiriet, “Tectonic and sedimentary evolution of the Gulf of Suez and the northwestern Red Sea,” Tectonophysics 153, 161–177 (1998).CrossRefGoogle Scholar
  65. 65.
    J. M. Moore, “Tectonics of the Najd transcurrent fault system, Saudi Arabia,” J. Geol. Soc. 136, 441–452 (1979).CrossRefGoogle Scholar
  66. 66.
    I. Moretti and B. Colletta, “Fault block tilting: The Gebel Zeit example, Gulf of Suez,” J. Struct. Geol. 10, 9–19 (1987).CrossRefGoogle Scholar
  67. 67.
    P. Morgan, “Egypt in the tectonic framework of global tectonics,” in The Geology of Egypt, Ed. by R. Said (Balkema, Rotterdam, 1990), pp. 91–111.Google Scholar
  68. 68.
    A. M. Moustafa, “Block faulting of the Gulf of Suez,” Fifth Egyptian General Petroleum Corporation Exploration Seminar, Cairo, Egypt, 1976 (Cairo, 1976), pp. 1–19.Google Scholar
  69. 69.
    A. R. Moustafa, “Controls on the development and evolution of transfer zones: The influence of basement structure and sedimentary thickness in the Suez Rift and Red Sea,” J. Struct. Geol. 19, 755–768 (1997).CrossRefGoogle Scholar
  70. 70.
    P. Ott d’Estevou, J. Bolze, and C. Montenat, “Etude géologique de la marge occidentale du Golfe de Suez: Le Massif des Gharamul et le Gebel Dara,” in Geological Studies of the Gulf of Suez, the Northwestern Red Sea Coasts, Tectonic and Sedimentary Evolution of a Neogene Rift, Vol. 10 of Doc. Trav. Inst. Geol. Albert de Lapparent, Ed. by C. P. Montenat (1986), pp. 19–44.Google Scholar
  71. 71.
    P. Ott d’Estevou, J. J. Jarrige, C. Montenat, and J.P. Richert, “Successive stages of paleostress and evolution of the Gulf of Suez and northern Red Sea Rift,” Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine 13, 297–318 (1989).Google Scholar
  72. 72.
    J. P. Petit, “Criteria for the sense of movement on fault surfaces in brittle rocks,” J. Struct. Geol. 9, 597–608 (1987).CrossRefGoogle Scholar
  73. 73.
    J. C. Plaziat, F. Baltzer, A. Choukri, O. Conchon, P. Freytet, F. Orszag-Sperber, A. Raguideau, and J. L. Reyss, “Quaternary marine and continental sedimentation in the northern Red Sea and Gulf of Suez: Influences of rift tectonics, climatic changes and sealevel fluctuations,” in Sedimentation and Tectonics of Rift Basins: Red Sea-Gulf of Aden, Ed. by B. H. Purser and D. W. J. Bosence (Chapman and Hall, London, 1998), pp. 537–573.CrossRefGoogle Scholar
  74. 74.
    Sedimentation and Tectonics of Rift Basins: Red Sea-Gulf of Aden, Ed. by B. H. Purser and D. W. J. Bosence (Chapman and Hall, London, 1998).Google Scholar
  75. 75.
    A. M. Quennell, “The Western Arabian rift system,” in The Geological Evolution of the Eastern Mediterranean, Ed. by J. E. Dixon and A. H. Robertson (Blackwell, Oxford, 1984), pp. 775–788.Google Scholar
  76. 76.
    U. Ring, C. Betzler, and D. Delvaux, “Normal vs. strike-slip faulting during rift development in East Africa: The Malawi Rift,” Geology 20, 1015–1018 (1992).CrossRefGoogle Scholar
  77. 77.
    B. R. Rosendahl, D. J. Reynolds, P. M. Lorber, C. F. Burgess, J. McGill, D. Scott, J. J. Lambiase, and S. J. Derksen, “Structural expression of rifting: Lessons from Lake Tanganyika, Africa,” in Sedimentation in the African Rifts, Vol. 25 of Geol. Soc. London, Spec. Publ., Ed. by E. Frostick, R. W. Renaut, I. Reid, and J. Tiercelin (London, 1986), pp. 29–43.Google Scholar
  78. 78.
    R. Said, The Geology of Egypt (Elsevier, Amsterdam, 1962).Google Scholar
  79. 79.
    R. Said, The Geology of Egypt (Balkema, Rotterdam, 1990).Google Scholar
  80. 80.
    G. F. Sella, T. H. Dixon, and A. Mao, “REVEL: A model for Recent plate velocities from space geodesy,” J. Geophys. Res.: Solid Earth 107 (2002). doi 10.1029/2000JB000033Google Scholar
  81. 81.
    B. Sperner, B. Müller, O. Heidbach, D. Delvaux, J. Reinecker, and K. Fuchs, “Tectonic stress in the Earth’s crust: Advances in the World Stress Map project,” in New Insights into Structural Interpretation and Modelling, Vol. 212 of Geol. Soc. London, Spec. Publ., Ed. by D. A. Nieuwland (London, 2003), pp. 101–116.Google Scholar
  82. 82.
    M. S. Steckler, F. Berthelot, N. Lyberis, and X. Le Pichon, “Subsidence in the Gulf of Suez: Implications for rifting and plate kinematics,” Tectonophysics 153, 249–270 (1988).CrossRefGoogle Scholar
  83. 83.
    R. J. Stern, “The Najd fault system, Saudi Arabia and Egypt: A Late Precambrian rift-related transform system,” Tectonics 4, 497–511 (1985).CrossRefGoogle Scholar
  84. 84.
    R. J. Stern, “Arc assembly and continental collision in the Neoproterozoic East African orogen implications for the consolidation of Gondwanaland,” Ann. Rev. Earth Planet. Sci. 22, 319–351 (1994).CrossRefGoogle Scholar
  85. 85.
    M. Strecker and W. Bosworth, “Quaternary stress field changes in the Gregory Rift, Kenya,” EOS, Trans., Am. Geophys. Union 72, 17–22 (1991).CrossRefGoogle Scholar
  86. 86.
    M. Strecker, P. Blisniuk, and G. Eisbacher, “Rotation of extension direction in the central Kenya Rift,” Geology 18, 299–302 (1990).CrossRefGoogle Scholar
  87. 87.
    M. Sultan, R. E. Arvidson, J. J. Duncan, R. J. Stern, and B. El Kaliouby, “Extension of the Najd Shear System from Saudi Arabia to the central Eastern Desert of Egypt based on integrated field and Landsat observations,” Tectonics 7, 1291–1306 (1988).CrossRefGoogle Scholar
  88. 88.
    F. B. Van Houten, D. P. Bhattacharyya, and S. E. I. Mansour, “Cretaceous Nubia Formation and correlative deposits, eastern Egypt: Major regressive–transgressive complex,” Geol. Soc. Am. Bull. 95, 397–405 (1984).CrossRefGoogle Scholar
  89. 89.
    T. Villemin, J. Angelier, and F. Bergerat, “Tectoniques en extension subsidence dans le Nord-Est de la France,” Ann., Soc. Geol. Nord, 221–229 (1984).Google Scholar
  90. 90.
    A. I. Younes, T. Engelder, and W. Bosworth, “Fracture distribution in faulted basement blocks: Gulf of Suez, Egypt,” in Structural Geology in Reservoir Characterization, Vol. 127 of Geol. Soc. London, Spec. Publ., Ed. by M. P. Coward, T. S. Daltaban, and H. Johnson (London, 1998), pp. 167–190.Google Scholar
  91. 91.
    M. I. Youssef, “Upper Cretaceous rocks in Kosseir area,” Bull. Inst. Desert Egypte 7, 35–53 (1957).Google Scholar
  92. 92.
    I. Zahran and F. Ismail, “Similarity in composition and tectonic style between basement exposed in Gebel El Zeit and Zeit Bay subsurface,” Proceedings of the Eighth Egyptian General Petroleum Corporation Special Exploration Conference, Cairo, Egypt, 1986 (Cairo, 1986), рр. 183–205.Google Scholar
  93. 93.
    M. L. Zoback, R. E. Anderson, and G. A. Thompson, “Cenozoic evolution of the state of stress and style of tectonism of the Basin and Range province of the western United States,” Philos. Trans. R. Soc. London, A 300, 407–434 (1981).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Geology Department, Faculty of ScienceMinia UniversityMiniaEgypt

Personalised recommendations