, Volume 51, Issue 4, pp 438–462 | Cite as

Strain geometry, microstructure and metamorphism in the dextral transpressional Mubarak Shear Belt, Central Eastern Desert, Egypt

  • M. A. Abd El-WahedEmail author
  • I. A. Thabet


Mubarak shear belt provides an opportunity to investigate quantitative finite strain (Rs), proportions of pure shear and simple shear components, sense of shear indicators, subhorizontal to steeply plunging mineral lineations, in a dextral transpressional zone. The structural style of the Mubarak shear belt is consistent with dextral transpression within the Central Eastern Desert where dextral and reverse shear have developed simultaneously with the regional foliation. The high strain zone of the Mubarak shear belt is characterized by steeply dipping foliation with sub-horizontal stretching lineation (simple shear) surrounded by thrust imbrications with slightly plunging stretching lineations. Strain estimates from the Mubarak shear belt are used to determine how pure and simple shear components of deformation are partitioned. The axial ratios in XZ sections range from 1.16 to 2.33 with the maximum stretch, S X , ranges from 1.06 to 1.48. The minimum stretch, S Z , ranges from 0.65 to 0.92 indicating a moderate variation in vertical shortening. Volcaniclastic metasediments and metagabbros were subjected to prograde low-grade regional metamorphism in the range of greenschist to lower amphibolite facies (450–650°C at 2–4 kbar). Medium pressure (6–8 kbar at 530°C) was estimated from the high strain zone within the dextral strike-slip shear zones. Retrograde metamorphism occurred at a temperature range of 250–280°C. There is a trend towards decreasing the ratio of 100Mg/(Mg + Fetot + Mn) away from the high strain zone of the Mubarak shear belt. Integrated strain and temperature estimates indicate that the simple shear (non-coaxial) components of deformation played a significant role in formation and exhumation of the Mubarak shear belt during the accumulation of finite strain and consequently during progressive transpression and thrusting.


Mubarak shear belt Central Eastern Desert dextral transpressional zone Finite-strain data microstructures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Abd El-Wahed, “Thrusting and transpressional shearing in the Pan-African nappe southwest El-Sibai core complex, Central Eastern Desert, Egypt,” J. Afr. Earth Sci. 50, 16–36 (2008).CrossRefGoogle Scholar
  2. 2.
    M. A. Abd El-Wahed, “Oppositely dipping thrusts and transpressional imbricate zone in the Central Eastern Desert of Egypt,” J. Afr. Earth Sci. 100, 42–59 (2014).CrossRefGoogle Scholar
  3. 3.
    M. A. Abd El-Wahed and S. Z. Kamh, “Pan-African dextral transpressive duplex and flower structure in the Central Eastern Desert of Egypt,” Gondwana Res. 18, 315–336 (2010).CrossRefGoogle Scholar
  4. 4.
    M. A. Abd El-Wahed, H. Z. Harraz, and M. H. El-Behairy, “Transpressional imbricate thrust zones controlling gold mineralization in the Central Eastern Desert of Egypt,” Ore Geol. Rev. 78, 424–446 (2016).CrossRefGoogle Scholar
  5. 5.
    A. Abu El Ela, PhD Thesis (Tanta Univ., Tanta, 1985).Google Scholar
  6. 6.
    M. M. Abu El-Enen, T. S. Abu-Alam, M. J. Whitehouse, K. A. Ali, and M. Okrusch, “P–T path and timing of crustal thickening during amalgamation of East and West Gondwana: A case study from the Hafafit Metamorphic Complex, Eastern Desert of Egypt,” Lithos 263, 213–238 (2016).CrossRefGoogle Scholar
  7. 7.
    M. K. Akaad, A. M. Noweir, and A. M. Abu El Ela, Geology of the Pan-African Basement Rocks of the Jabal al Hadid-Wadi Mubarak District, Eastern Desert, Egypt, Vol. 73 of Geol. Surv. Egypt, Pap. (1996).Google Scholar
  8. 8.
    H. Alsleben, P. H. Wetmore, K. L. Schmidt, S. R. Paterson, and E. A. Melis, “Complex deformation during arc-continent collision: Quantifying finite strain in the accreted Alisitos arc, Peninsula Ranges batholith, Baja California,” J. Struct. Geol. 30, 220–236 (2008).CrossRefGoogle Scholar
  9. 9.
    T. Blenkinsop, Deformation Microstructures and Mechanisms in Minerals and Rocks (Kluwer, Dordrecht, 2000).Google Scholar
  10. 10.
    J. D. Blundy and T. J. B. Holland, “Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer,” Contrib. Mineral. Petrol. 104, 1208–1241 (1990).CrossRefGoogle Scholar
  11. 11.
    M. Bregar, A. Bauernhofer, K. Pelz, U. Kloetzli, H. Fritz, and P. Neumayr, “A late Neoproterozoic magmatic core complex in the Eastern Desert of Egypt; emplacement of granitoids in a wrench-tectonic setting,” Precambrian Res. 118, 59–82 (2002).CrossRefGoogle Scholar
  12. 12.
    E. H. Brown, “The crossite content of Ca-amphibole as a guide to pressure of metamorphism,” J. Petrology 18, 35–72 (1988).Google Scholar
  13. 13.
    A. Ellero, G. Ottria, M. Marroni, L. Pandolfi, and M. Göncüoglu, “Analysis of the North Anatolian Shear Zone in Central Pontides (northern Turkey): Insight for geometries and kinematics of deformation structures in a transpressional zone,” J. Struct. Geol. 72, 124–141 (2015).CrossRefGoogle Scholar
  14. 14.
    M. F. El-Ramly, “A new geologic map of the Eastern and South Western Deserts of Egypt. Scale 1: 1000000,” Ann. Geol. Surv. Egypt 12, 1–18 (1972).Google Scholar
  15. 15.
    E. A. Erslev, “Normalized center-to-center strain analysis of packed aggregates,” J. Struct. Geol. 10, 201–209 (1988).CrossRefGoogle Scholar
  16. 16.
    D. Flinn, “On folding during three-dimensional progressive deformation,” J. Geol. Soc. London 118, 385–433 (1960).CrossRefGoogle Scholar
  17. 17.
    H. Fossen and B. Tikoff, “The deformation matrix for simultaneous pure shear, simple shear and volume change, and its application to transpression/transtension tectonics,” J. Struct. Geol. 15, 418–422 (1993).Google Scholar
  18. 18.
    H. Fritz, D. R. Dalmeyer, E. Wallbrecher, J. Loizenbauer, G. Hoinkes, P. Neumayr, and A. A. Khudeir, “Neoproterozoic tectonothermal evolution of the Central Eastern Desert, Egypt: A slow velocity tectonic process of core complex exhumation,” J. Afr. Earth Sci. 34, 543–576 (2002).Google Scholar
  19. 19.
    H. Fritz, E. Wallbrecher, A. A. Khudeir, F. Abu El Ela and R. D. Dallmeyer, “Formation of Neoproterozoic metamorphic core complexes during oblique convergence, Eastern Desert, Egypt,” J. Afr. Earth Sci. 23, 311–329 (1996).CrossRefGoogle Scholar
  20. 20.
    H. Fritz, M. Abdelsalam, K. A. Ali, B. Bingen, A. S. Collins, A. R. Fowler, W. Ghebreab, C. A. Hauzenberger, P. R. Johnson, T. M. Kusky, P. Macey, S. Muhongo, R. G. Stern, and G. Viola, “Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution,” J. Afr. Earth Sci. 86, 65–106 (2013).CrossRefGoogle Scholar
  21. 21.
    N. Fry, “Random point distributions and strain measurement in rocks,” Tectonophysics 60, 89–105 (1979).CrossRefGoogle Scholar
  22. 22.
    A. R. Fowler and A. F. Osman, “The Sha’it–Nugrus shear zone separating Central and South Eastern Deserts, Egypt: A post-arc collision low-angle normal ductile shear zone,” J. Afr. Earth Sci. 53, 16–32 (2009).CrossRefGoogle Scholar
  23. 23.
    A. R. Fowler, H. Khamees, and H. Dowidar, “El Sibai gneissic complex, Central Eastern Desert, Egypt: Folded nappes and syn-kinematic gneissic granitoid sheets—not a core complex,” J. Afr. Earth Sci. 49, 119–135 (2007).CrossRefGoogle Scholar
  24. 24.
    Z. Hamimi, E. S. K. El-Sawy, A. Al-Fakharani, M. Matsah, A. Shujoon, and M. K. El-Shafei, “Neoproterozoic structural evolution of the NE-trending Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia,” J. Afr. Earth Sci. 99, 51–63 (2014).CrossRefGoogle Scholar
  25. 25.
    Z. Hamimi, O. Kassem, and M. N. El-Sarbouty, “Application of kinematic vorticity techniques for mylonitized rocks in Al Amar Suture, Eastern Arabian Shield, Saudi Arabia,” Geotectonics 49, 439–450 (2015).CrossRefGoogle Scholar
  26. 26.
    J. M. Hammarstrom and E. Zen, “Aluminum in hornblende: An empirical igneous geobarometer,” Am. Mineral. 7, 1297–1313 (1986).Google Scholar
  27. 27.
    W. B. Harland, “Tectonic transpression in Caledonian Spitzbergen,” Geol. Mag. 108, 27–42 (1971).CrossRefGoogle Scholar
  28. 28.
    M. Hassan, T. S. Abu-Alam, C. Hauzenberger, and K. Stüwe, “Geochemical signature variation of pre-, syn- and post-shearing intrusives within the Najd Fault System of western Saudi Arabia,” Lithos 263, 274–291 (2016).CrossRefGoogle Scholar
  29. 29.
    M. H. Hey, “A new review of the chlorites,” Mineral. Mag. 30, 272–292 (1954).Google Scholar
  30. 30.
    L. S. Hollister, G. C. Grissom, E. K. Peters, H. H. Stowell, and V. B. Sisson, “Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons,” Am. Mineral. 72, 231–239 (1987).Google Scholar
  31. 31.
    T. J. B. Holland and J. D. Blundy, “Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry,” Contrib. Mineral. Petrol. 116, 433–447 (1994).CrossRefGoogle Scholar
  32. 32.
    M. E. Johnson and M. J. Rutherford, “Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California),” Geology 17, 837–841 (1989).CrossRefGoogle Scholar
  33. 33.
    R. R. Jones and P. W. Tanner, “Strain partitioning in transpression zones”, J. Struct. Geol. 17, 793–802 (1995).Google Scholar
  34. 34.
    O. M. K. Kassem, “Determining heterogeneous deformation for granitic rocks in the Northern thrust in Wadi Mubark belt, Eastern Desert, Egypt,” Geotectonics 45, 244–254 (2011).CrossRefGoogle Scholar
  35. 35.
    O. M. K. Kassem, “Kinematic analysis of the Migif area in the Eastern Desert of Egypt,” J. Afr. Earth Sci. 90, 136–149 (2014).CrossRefGoogle Scholar
  36. 36.
    O. M. K. Kassem, “Investigation of kinematic analysis in the Tanumah area, Arabian shield, Saudi Arabia,” J. Tethys 31, 16–30 (2015).Google Scholar
  37. 37.
    O. M. K. Kassem and S. Abdel Raheim, “Finite strain analysis for the metavolcanic sedimentary rocks in the Gabel El Mayet region, Central Eastern Desert, Egypt,” J. Afr. Earth Sci. 58, 321–330 (2010).CrossRefGoogle Scholar
  38. 38.
    O. M. K. Kassem and Z. Hamimi, “Application of finite strain technique for deformed lithologies in Al Amar suture, Eastern Arabian Shield,” The Open Geol. J. 8, 97–106 (2014).CrossRefGoogle Scholar
  39. 39.
    O. M. K. Kassem and U. Ring, “Underplating-related finite-strain patterns in the Gran Paradiso massif, Western Alps, Italy: Heterogeneous ductile strain superimposed on a nappe stack,” J. Geol. Soc. London 161, 875–884 (2004).CrossRefGoogle Scholar
  40. 40.
    C. Klitzch, F. List, and A. Pöhlmann, Geological Map of Egypt (CONOCO), NG 36NE, Qusier, Scale 1: 500 000 (1987).Google Scholar
  41. 41.
    R. D. Law, M. P. Searle, and R. L. Simpson, “Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet,” J. Geol. Soc. London 161, 305–320 (2004).CrossRefGoogle Scholar
  42. 42.
    B. E. Leake, “Compiler for subcommittee on amphiboles, IMA nomenclature of amphiboles,” Am. Mineral. 63, 1023–1052 (1978).Google Scholar
  43. 43.
    R. J. Lisle, “Strain analysis from point fabric patterns: An objective variant of the Fry method,” J. Struct. Geol. 32, 975–981 (2010).CrossRefGoogle Scholar
  44. 44.
    M. Mukul and G. Mitra, “Finite strain and strain variation analysis in the Sheeprock thrust sheet: An internal thrust sheet in the Provo salient of the Sevier Foldand–thrust belt, Central Utah,” J. Struct. Geol. 20, 385–405 (1998).CrossRefGoogle Scholar
  45. 45.
    A. R. Nummer, R. Machado, and N. M. Dehler, “Pluton emplacement in a releasing bend in a transpressive regime: The Arrozal granite in the Paraba do Sul shear belt, Rio de Janeiro,” Ann. Braz. Acad. Sci. 79, 299–305 (2007).CrossRefGoogle Scholar
  46. 46.
    W. H. Owens, “The calculation of a best-fit ellipsoid from elliptical sections on arbitrarily oriented planes,” J. Struct. Geol. 6, 571–578 (1984).CrossRefGoogle Scholar
  47. 47.
    C. W. Passchier, “Stable positions of rigid objects in noncoaxial flow-a study in vorticity analysis,” J. Struct. Geol. 9, 679–690 (1987).CrossRefGoogle Scholar
  48. 48.
    C. W. Passchier and J. L. Urai, “Vorticity and strain analysis using Mohr diagrams,” J. Struct. Geol. 10, 755–763 (1988).CrossRefGoogle Scholar
  49. 49.
    R. Panozzo, “Two-dimensional strain from the orientation of lines in a plane,” J. Struct. Geol. 6, 215–221 (1984).CrossRefGoogle Scholar
  50. 50.
    R. Panozzo, “Two-dimensional strain determination by the inverse SURFOR wheel,” J. Struct. Geol. 9, 115–119 (1987).CrossRefGoogle Scholar
  51. 51.
    C. Pauli, S. M. Schmid, and R. Panozzo, “Fabric domains in quartz mylonites: Localized three dimensional analysis of microstructure and texture,” J. Struct. Geol. 18, 1183–1203 (1996).CrossRefGoogle Scholar
  52. 52.
    L. P. Plyusnina, “Geothermometry and geobarometry of plagioclase- hornblende bearing assemblages,” Contrib. Mineral. Petrol. 80, 140–146 (1982).CrossRefGoogle Scholar
  53. 53.
    J. G. Ramsay, Folding and Fracturing of Rocks (McGraw Hill, London, 1967).Google Scholar
  54. 54.
    J. G. Ramsay and R. J. Lisle, The Techniques of Modern Structural Geology, Vol. 3: Applications of Continuum Mechanics in Structural Geology (Academic Press, London, 2000).Google Scholar
  55. 55.
    J. G. Ramsay and M. I. Huber, The Techniques of Modern Structural Geology, Vol. 1: Strain Analysis (Academic Press, New York, 1983).Google Scholar
  56. 56.
    U. Ring and C. Kumerics, “Vertical ductile thinning and its contribution to the exhumation of high-pressure rocks: The Cycladic blueschist unit in the Aegean,” J. Geol. Soc. London 165, 1019–1030 (2008).CrossRefGoogle Scholar
  57. 57.
    U. Ring, “Exhumation of blue schists from Samos Island”, Bull. Geol. Soc. Greece 32, 97–104 (1998).Google Scholar
  58. 58.
    U. Ring and O. M. K. Kassem, “The nappe rule: Why does it work?”, J. Geol. Soc. 164, 1109–1112 (2007).Google Scholar
  59. 59.
    P. Robinson, F. S. Spear, J. C. Schumacher, J. Laird, C. Klein, B. W. Evans, and B. L. Doolan, “Phase relations of metamorphic amphiboles: Natural occurrence and theory,” in Amphiboles: Petrology and Experimental Phase Relations, Vol. 9B of Rev. Mineral., Ed. by D. R. Veblen and P. H. Ribbe (Mineral. Soc. Am., 1982), pp. 1–227.Google Scholar
  60. 60.
    D. J. Sanderson and W. R. Marchini, “Transpression,” J. Struct. Geol. 6, 449–458 (1984).CrossRefGoogle Scholar
  61. 61.
    M. W. Schmidt, “Amphibole composition in tonalite as a function of pressure: An experimental calibration of the AI-in-hornblende barometer,” Contrib. Mineral. Petrol. 110, 304–310 (1992).CrossRefGoogle Scholar
  62. 62.
    A. Shalaby, K. Stüwe, F. Makroum, H. Fritz, T. Kebede, and U. Klotzli, “The Wadi Mubarak belt, Eastern Desert of Egypt: A Neoproterozoic conjugate shear system in the Arabian–Nubian Shield,” Precambrian Res. 136, 27–50 (2005).CrossRefGoogle Scholar
  63. 63.
    C. Simpson and D. G. De Poar, “Strain and kinematic analysis in general shear zones,” J. Struct. Geol. 15, 1–20 (1993).CrossRefGoogle Scholar
  64. 64.
    C. Simpson and S. M. Schmid, “An evolution of criteria to determine the sense of movement of sheared rocks,” Geol. Soc. Am. Bull. 94, 1281–1288 (1983).CrossRefGoogle Scholar
  65. 65.
    A. Soares and R. Dias, “Fry and Rf/f strain methods constraints and fold transection mechanisms in the NW Iberian Variscides,” J. Struct. Geol. 79, 19–30 (2015).CrossRefGoogle Scholar
  66. 66.
    R. J. Stern, “The Najd fault system, Saudi Arabia and Egypt: A Late Precambrian rift-related transform system,” Tectonics 4, 497–511 (1985).CrossRefGoogle Scholar
  67. 67.
    R. J. Stern, “Arc assembly and continental collision in the Neoproterozoic East African Orogen implications for the consolidation of Gondwanaland,” Ann. Rev. Earth Planet. Sci. 22, 319–351 (1994).CrossRefGoogle Scholar
  68. 68.
    I. Thabet, A. Kilias, and S. Kamh, “Microstructural finite strain analysis of the Hafafit granitoids domes, south central eastern desert of Egypt,” Bull. Geol. Soc. Greece 47, 667–679 (2013).CrossRefGoogle Scholar
  69. 69.
    B. Tikoff and C. Teyssier, “Strain modeling of displacement- field partitioning in transpressional orogens,” J. Struct. Geol. 16, 1575–1588 (1994).CrossRefGoogle Scholar
  70. 70.
    K. Sarkarinejad, “Quantitative finite strain and kinematic flow analyses along the Zagros transpression zone, Iran,” Tectonophysics 442, 49–65 (2007).CrossRefGoogle Scholar
  71. 71.
    Q. Zhang, S. Giorgis, and C. Teyssier, “Finite strain analysis of the Zhangbaling metamorphic belt, SE China–Crustal thinning in transpression,” J. Struct. Geol. 49, 3–22 (2013).CrossRefGoogle Scholar
  72. 72.
    W. Zang and W. S. Fyfe, “Chloritization of the hydrothermally altered bedrock at the Igarape Bahia gold deposit, Carajas, Brazil,” Miner. Deposita 30, 30–38 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Geology Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations