, Volume 51, Issue 3, pp 230–258 | Cite as

Tectonic and geomechanical control of dikes and sill-like bodies: Evidence from the northwestern part of the Kola Peninsula

  • Yu. A. MorozovEmail author
  • A. N. Galybin
  • Sh. A. Mukhamediev
  • A. I. Smul’skaya


A study of the meticulously documented Paleoproterozoic swarms of basic dikes and sill-like bodies, as well as granite veins crosscutting Archean granite-gneiss country rocks of the Central Kola Geoblock of the Fennoscandian Shield, elucidates the question of geomechanical control of the spatial location of syntectonic sheetlike magmatic bodies intruding into heterogeneous structured geomedium. Based on structural analysis and mapping results, the succession of emplacement of several dike generations has been reconstructed and linked to structural parageneses of the corresponding deformation stages. We evaluate the effect of geomechanical and tectonic factors as well as the structural elements of enclosing strata on the places of dike localization, the character of their spatial distribution, morphology of particular bodies, and patterns of swarm systems. Geomechanical problems on the intrusion of single bodies and their communities are solved taking into account their interaction and the heterogeneity of the medium. The conditions necessary for transition of nearly vertical dikes into sills are discussed.


dike sill magma-filled crack fracture structural paragenesis tectonic structure numerical simulation geomechanical factors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kh. M. Abdullaev, Dikes and Mineralization (Gosgeoltekhizat, Moscow, 1957) [in Russian].Google Scholar
  2. 2.
    A. A. Arzamastsev, Zh. A. Fedotov, and L. V. Arzamastseva, Dike Magmatism in the Northeastern Baltic Shield (Nauka, Moscow, 2009) [in Russian].Google Scholar
  3. 3.
    A. S. Baluev, Yu. A. Morozov, E. N. Terekhov, T. B. Bayanova, and S. N. Tyupanov, “Tectonics of the junction region between the East European Craton and West Arctic Platform,” Geotectonics 50, 453–481 (2016).CrossRefGoogle Scholar
  4. 4.
    T. B. Bayanova, V. I. Pozhilenko, V. F. Smol’kin, N. M. Kudryashov, T. V. Kaulina, and V. R. Vetrin, Catalog of Geochronological Data on the Northeastern Baltic Shield (Geol. Inst. Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, Apatity, 2002) [in Russian].Google Scholar
  5. 5.
    Yu. R. Bekker, V. Z. Negrutsa, and N. I.Polevaya, “The age of glauconite horizon and the upper Hyperborean boundary in the eastern part of the Baltic Shield,” Dokl. Akad. Nauk SSSR 193, 1123–1126 (1970).Google Scholar
  6. 6.
    R. V. Veselovskii and A. A. Arzamastsev, “Evidence for the Mesozoic endogenous activity in the northeastern part of the Fennoscandian Shield,” Dokl. Earth Sci. 438, 754–758 (2001).CrossRefGoogle Scholar
  7. 7.
    V. R. Vetrin, “Duration of the formation and sources of the granitoids of the Litsk–Araguba Complex, Kola Peninsula,” Geochem. Int. 52, 33–45 (2014).CrossRefGoogle Scholar
  8. 8.
    B. V. Gavrilenko, I. V. Nikitin, D. R. Zozulya, N. M. Kudryashov, M. N. Petrovskii, O. P. Korsakova, and N. N. Galkin, “Geology, tectonics, age, and metallogeny of the Archean suture zone in Kolmozero–Voron’ya area, Kola region,” Vestn. Mos. Gos. Tekh. Univ. 5 (1), 43–60 (2002).Google Scholar
  9. 9.
    D. M. Guberman, T. L. Larikova, Yu. A. Morozov, A. I. Smul’skaya, V. N. Sholpo, and Yu. N. Yakovlev, “Structure and evolution of geological space around the Kola superdeep based on the studies of structuralmaterial inhomogeneities,” Vestn. Mos. Gos. Tekh. Univ. 10 (1), 144–159 (2007).Google Scholar
  10. 10.
    N. L. Dobretsov, A. G. Kirdyashkin, A. A. Kirdyashkin, Deep Geodynamics (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2001) [in Russian].Google Scholar
  11. 11.
    S. V. Efremova, Dikes and Endogenous Mineralization (Nedra, Moscow, 1983) [in Russian].Google Scholar
  12. 12.
    A. A. Kalinin and N. N. Galkin, “Pellapakh copper–molybdenum–porphyry deposit of the Precambrian (Kolmozero–Voron’ya greenstone belt),” Vestn. Kol’sk. Nauchn. Tsentra Ross. Akad. Nauk, No. 1, 79–92 (2002).Google Scholar
  13. 13.
    S. A. Kurenkov and A. S. Perfil’ev, “Dike complexes and their tectonic interpretation,” Geotektonika, No. 5, 3–15 (1984).Google Scholar
  14. 14.
    S. P. Korikovskii, Facies of Metapelites Metamorphism (Nauka, Moscow, 1979) [in Russian].Google Scholar
  15. 15.
    Magmatism, Sedimentogenesis, and Geodynamics of the Pechenga Paleorift Structure, Ed. by F. P. Mitrofanov and V. F. Smol’kin (Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, Apatity, 1995) [in Russian].Google Scholar
  16. 16.
    A. A. Marakushev and N. I. Bezmen, Mineralogical-Petrographic Criteria of Effusive Rock Mineralization (Nedra, Moscow, 1992) [in Russian].Google Scholar
  17. 17.
    V. M. Moralev and M. D. Samsonov, “Geodynamic conditions of intrusion in the Por’ya Guba (Kandalaksha Gulf, White Sea) field and petrology of differentage data on the area,” Izv. Vyssh. Uchebn. Zaved., Geol. Razved., No. 4, 3–9 (2003).Google Scholar
  18. 18.
    Yu. A. Morozov, “Cyclicity of kinematic inversions in mobile belts in the light of lunar–terrestrial interaction,” Geotectonics 38, 17–42 (2004).Google Scholar
  19. 19.
    Yu. A. Morozov, Extended Abstract of Doctoral (Geol.-Mineral.) Dissertation (Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, 2004).Google Scholar
  20. 20.
    Swarms of Igneous Dikes as Indicators of Endogenous Regimes: Case Study of the Kola Peninsula, Ed. by F. P. Mitrofanov (Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, Apatity, 1989) [in Russian].Google Scholar
  21. 21.
    A. V. Savitskii and V. I. Kazanskii, “Results of petrophysical investigations of ore-bearing faults in the crystalline basement,” in Internal Structure of Ore-Bearing Precambrian Faults, Ed. by I. M. Tomson (Nauka, Moscow, 1985), pp. 48–72.Google Scholar
  22. 22.
    M. P. Savruk, Two-Dimensional Elasticity Problems for Cracked Bodies (Nauk. Dumka, Kiev, 1981) [in Russian].Google Scholar
  23. 23.
    M. D. Samsonov, Extended Abstract of Candidate’s (Geol.-Mineral.) Dissertation (Geological Institute of the Russian Academy of Sciences, Moscow, 2004).Google Scholar
  24. 24.
    P. K. Skuf’in, Extended Abstract of Doctoral (Geol.- Mineral.) Dissertation (Moscow State Univ., Moscow, 1998).Google Scholar
  25. 25.
    P. K. Skuf’in and T. B. Bayanova, “Geochemistry of volcanic rocks of the Pechenga structure as reflection of plume-tectonic activity during the Paleoproterozoic evolution of the Kola-Karelian region,” in Geodynamics, Magmatism, Sedimentogenesis, and Minerageny of Northwestern Russia: Proceedings of the All-Russia Conference, Petrozavodsk, Russia, 2007 (Karel. Nauchn. Tsentr Ross. Akad. Nauk, Petrozavodsk, 2007), pp. 369–372.Google Scholar
  26. 26.
    V. F. Smol’kin, “Magmatism of the Early Proterozoic (2.5–1.7 Ga B.P.) paleorift system in the northwestern Baltic Shield,” Petrologiya 5, 394–411 (1997).Google Scholar
  27. 27.
    V. F. Smol’kin, T. B. Bayanova, and Zh. A. Fedotov, “Ore-bearing basites and ultrabasites of the Pechenga-Allarechenskii area, Kola region: Isotope dating,” in Solving the Problems of Geodynamics and Ore-Genesis by Isotope Geochronology: Abstracts (Inst. Geol. Geokhronol. Dokembriya Ross. Akad. Nauk, St. Petersburg, 2003), pp. 467–470.Google Scholar
  28. 28.
    V. F. Smol’kin, E. Hanski, H. Huhma, and Zh. A. Fedotov, “Sm–Nd and U–Pb isotope studies of the Nyasyukskii (Nyasyukkya) dike compex, Kola Peninsula, Russia,” Tr. Kol’sk. Nauchn. Tsentra Ross. Akad. Nauk, No. 7, 74–84 (2015).Google Scholar
  29. 29.
    Zh. A. Fedotov and Yu. V. Amelin, “Post-Svecofennian dolerite dikes of the Kola Peninsula: Dual nature of cratonic magmatism,” Vestn. Mos. Gos. Tekh. Univ. 1 (3), 33–41 (1998).Google Scholar
  30. 30.
    Zh. A. Fedotov, “Dike magmatism as indicator of Early Proterozoic riftogenic processes in the northeastern Baltic Shield,” in Geodynamics, Magmatism, Sedimentogenesis, and Minerageny of Northwestern Russia: Proceedings of the All-Russia Conference, Petrozavodsk, Russia, 2007 (Karel. Nauchn. Tsentr Ross. Akad. Nauk, Petrozavodsk, 2007), pp. 402–405.Google Scholar
  31. 31.
    M. A. Fedotova and Zh. A. Fedotov, “Basic rocks from the area of lead-zinc veins in northwestern Murmansk coast,” in Geology and Metallogeny of the Kola Peninsula (Kol’sk. Nauchn. Tsentr Akad. Nauk SSSR, Apatity, 1972), Vol. 4, pp. 94–104.Google Scholar
  32. 32.
    E. V. Sharkov, O. A. Bogatikov, and I. S. Krasivskaya, “The role of mantle plumes in the Early Precambrian tectonics of the eastern Baltic Shield,” Geotectonics 34, 85–105 (2000).Google Scholar
  33. 33.
    A. A. Andreev, A. N. Galybin, and O. Y. Izvekov, “Application of complex SIE method for the prediction of hydrofracture path,” Eng. Anal. Boundary Elem. 50, 133–140 (2015).CrossRefGoogle Scholar
  34. 34.
    Yu. A. Balashov, V. R. Vetrin, L. F Gannibal, P. K. Skuf’in, I. B. Sharkov, O. G. Sherstennikova, and Zh. A. Fedotov, “New data on geochronology of the Pechenga structure and its framing,” in The Svecofennian Domain: Annual Meeting of IGCP-275, Turku, Finland, 1993, pp. 7–8.Google Scholar
  35. 35.
    J. Cook, J. E. Gordon, C. C. Evans, and D. M. Marsh, “A mechanism for the control of crack propagation in all-brittle systems,” Proc. R. Soc. London, A 282, 508–520 (1964).CrossRefGoogle Scholar
  36. 36.
    S. J. Daly, V. V. Balagansky, M. J. Timmerman, and M. J. Whitehouse, “The Lapland-Kola orogeny: Paleoproterozoic collision and accretion of northern Fennoscandian lithosphere,” in European Lithosphere Dynamics, Vol. 32 of Geol. Soc. London. Mem., Ed. by D. G. Gee and R. A. Stephenson (London, 2006), pp. 579–598.Google Scholar
  37. 37.
    K. Daniels, J. Kavanagh, T. Menand, and R. Sparks, “The shapes of dikes: Evidence for the influence of cooling and inelastic deformation,” Geol. Soc. Am. Bull. 124, 1102–1112 (2012).CrossRefGoogle Scholar
  38. 38.
    A. N. Galybin, “Numerical solutions for polygonal cracks,” Int. J. Fract. 131 (2), L15–L20 (2005).CrossRefGoogle Scholar
  39. 39.
    A. N. Galybin and Sh. A. Mukhamediev, “Fracture development on a weak interface ahead of a fluiddriven crack,” Eng. Fract. Mech. 129, 90–101 (2014).CrossRefGoogle Scholar
  40. 40.
    A. N. Galybin and G. V. Paderin, “Modelling of parallel dyke system growth by the complex boundary integral equation method,” in Proceedings of the 10th UK Conference on Boundary Integral Methods, Brighton, UK, 2015, Ed. by P. J. Harris (Univ. Brighton, Brighton, 2015), pp. 121–130.Google Scholar
  41. 41.
    L. N. Germanovich and D. K. Astakhov, “Stress-dependent permeability and fluid flow through parallel joints,” J. Geophys. Res.: Solid Earth 109, Pap. No. B09203 (2004). doi 10.1029/2002JB002133Google Scholar
  42. 42.
    L. N. Germanovich and D. K. Astakhov, “Fracture closure in extension and mechanical interaction of parallel joints,” J. Geophys. Res.: Solid Earth 109, Pap. No. B02208 (2004). doi 10.1029/2002JB002131Google Scholar
  43. 43.
    A. Gudmundsson, “Deflection of dykes into sills at discontinuities and magma-chamber formation,” Tectonophysics 500, 50–64 (2011).CrossRefGoogle Scholar
  44. 44.
    H. Huhma, V. F. Smolkin, and E. Hanski, “Sm–Nd isotope study of the Nyasuk dyke complex in the Northern Pechenga, Kola, Russia,” in Abstracts of the IGCP Project 336 Symposium, Rovaniemi, Finland, 1996, pp. 57–58.Google Scholar
  45. 45.
    G. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate,” J. Appl. Mech. 24, 361–364 (1957).Google Scholar
  46. 46.
    J. L. Kavanagh and R. S. J. Sparks, “Insights of dyke emplacement mechanics from detailed 3D dyke thickness datasets,” J. Geol. Soc. London 168, 965–978 (2011).CrossRefGoogle Scholar
  47. 47.
    R. Lahtinen, A. A. Garde, and V. A. Melezhik, “Paleoproterozoic evolution of Fennoscandia and Greenland,” Episodes 31, 20–28 (2008).Google Scholar
  48. 48.
    F. Maccaferri, M. Bonafede, and E. Rivalta, “A numerical model of dyke propagation in layered elastic media,” Geophys. J. Int. 180, 1107–1123 (2010).CrossRefGoogle Scholar
  49. 49.
    V. A. Melezhik and E. J. Hanski, “Paleotectonic and Paleogeographic Evolution of Fennoscandia in the Early Paleoproterozoic,” in Reading the Archive of Earth’s Oxygenation, Vol. 1: The Paleoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia–Drilling Early Earth Project, Ed. by V. A. Melezhik, A. R. Prave, E. J. Hanski, A. E. Fallick, A. Lepland, and L. Kump (Springer, Berlin, 2013), pp. 111–178. doi 10.1007/978-3-642-29682-6_5CrossRefGoogle Scholar
  50. 50.
    D. C. P. Peacock and R. Marrett, “Strain and stress: Reply,” J. Struct. Geol. 22, 1369–1378 (2000).CrossRefGoogle Scholar
  51. 51.
    Rock Fracture Mechanics, No. 275 of International Centre for Mechanical Sciences, Courses and Lectures, Ed. by H. P. Rossmanith (Springer, Vienna, 1983).Google Scholar
  52. 52.
    C. H. Yew and X. Weng, Mechanics of Hydraulic Fracturing, 2nd ed. (Gulf Professional Publishing, Houston, Tx, 2014).Google Scholar
  53. 53.
    J. Zhou, M. Chen, Y. Jin, and G. Zhang, “Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs,” Int. J. Rock Mech. Min. Sci. 45, 1143–1152 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • Yu. A. Morozov
    • 1
    Email author
  • A. N. Galybin
    • 1
  • Sh. A. Mukhamediev
    • 1
  • A. I. Smul’skaya
    • 1
  1. 1.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia

Personalised recommendations