Skip to main content

Development of continental margins of the Atlantic Ocean and successive breakup of the Pangaea-3 supercontinent

Abstract

Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.

This is a preview of subscription content, access via your institution.

References

  1. M. P. Antipov, S. L. Belyakov, Yu. M. Pushcharovsky, and A. E. Shlezinger, “On tectonics of the perioceanic basins,” Geotektonika, No. 1, 62–73 (1994).

    Google Scholar 

  2. A. O. Mazarovich, Geological Structure of the Central Atlantic: Fractures, Volcanic Edifices, and Deformations of the Ocean Floor, Vol. 530 of Tr. Geol. Inst. Ross. Akad. Nauk (Nauchn. mir, Moscow, 2000) [in Russian].

    Google Scholar 

  3. E. N. Melankholina, “Tectonotype of volcanic passive margins in the Norwegian–Greenland region,” Geotectonics 42, 225–243 (2008).

    Article  Google Scholar 

  4. E. N. Melankholina, “Tectonotype of Nonvolcanic Passive Margins in the Iberia–Newfoundland Region,” Geotectonics 45, 71–93 (2011).

    Article  Google Scholar 

  5. E. N. Melankholina and N. M. Sushchevskaya, “Development peculiarities of the magmatism synchronous to the formation of the North Atlantic passive margins,” Geotectonics 47, 75–92 (2013).

    Article  Google Scholar 

  6. E. N. Melankholina and N. M. Sushchevskaya, “Development of passive volcanic margins of the Central Atlantic and initial opening of ocean,” Geotectonics 49, 75–91 (2015).

    Article  Google Scholar 

  7. V. N. Puchkov, “The controversy over plumes: Who is actually right?,” Geotectonics 43, 1–17 (2009).

    Article  Google Scholar 

  8. Yu. M. Pushcharovsky, Tectonics of the Atlantic with Elements of Nonlinear Geodynamics, Vol. 482 of Tr. Geol. Inst. Ross. Akad. Nauk (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  9. Yu. M. Pushcharovsky, “Tectonic phenomena in oceans,” in Fundamental Problems of General Tectonics (Nauchn. mir, Moscow, 2001), pp. 174–230.

    Google Scholar 

  10. N. M. Sushchevskaya, E. N. Melankholina, and B. V. Belyatskii, “Influence of deep plumes on formation and geochemical evolution of oceanic magmatism in the Northern and Central Atlantic,” in Internal Oceanic Complexes and Hydrothermal Process: IX Working Session of the Russian Division of the InterRidge Project, Moscow, Russia, 2015 (Inst. Geokhim. Anal. Khim. Ross. Akad. Nauk, Moscow, 2015), pp. 59–62.

    Google Scholar 

  11. V. E. Khain and M. A. Goncharov, “Geodynamic cycles and geodynamic systems of various ranks: Their relationships and evolution in the Earth’s history,” Geotectonics 40, 327–344 (2006).

    Article  Google Scholar 

  12. P. Armienti and P. Longo, “Three-dimensional representation of geochemical data from a multidimensional compositional space,” Int. J. Geosci. 2, 231–239 (2011).

    Article  Google Scholar 

  13. N. T. Arndt and U. Christensen, “The role of lithospheric mantle in continental flood volcanism: Thermal and geochemical constraints,” J. Geophys. Res.: Solid Earth 97, 10967–10981 (1992).

    Article  Google Scholar 

  14. C. Berndt, O. P. Skogly, S. Planke, O. Eldholm, and R. Mjelde, “High velocity break-up related sills in the Vøring Basin off Norway,” J. Geophys. Res.: Solid Earth 105, 28443–28455 (2000).

    Article  Google Scholar 

  15. H. Bijwaard and W. Spakman, “Tomographic evidence for a narrow whole mantle plume below Iceland,” Earth Planet. Sci. Lett. 166, 121–126 (1999).

    Article  Google Scholar 

  16. S. Callegaro, A. Marzoli, H. Bertrand, M. Chiaradia, L. Reisberg, C. Meyzen, G. Bellieni, R. E. Weems, and R. Merle, “Upper and lower crust recycling in the source of CAMP basaltic dykes from southeastern North America,” Earth Planet. Sci. Lett. 376, 186–199 (2013).

    Article  Google Scholar 

  17. J. M. Cebriá, J. López-Ruiz, M. Doblas, L. T. Martins, and J. Munha, “Geochemistry of the Early Jurassic Messejana–Plasencia dyke (Portugal–Spain); Implications on the origin of the Central Atlantic Magmatic Province,” J. Petrol. 44, 547–568 (2003).

    Article  Google Scholar 

  18. C. Class and A. P. le Roex, “Continental material in the shallow oceanic mantle—how does it get there?,” Geology 34, 129–132 (2006).

    Article  Google Scholar 

  19. K. Deckart, H. Bertrand, and J. P. Liegeois, “Geochemistry and Sr, Nd, Pb isotopic composition of the Central Atlantic Magmatic Province (CAMP) in Guyana and Guinea,” Lithos 82, 289–314 (2005).

    Article  Google Scholar 

  20. A. De Min, E. M. Piccirillo, A. Marzoli, G. Bellieni, P. R. Renne, M. Ernesto, L. S. Marques, “The Central Atlantic Magmatic Province (CAMP) in Brazil; petrology, geochemistry, 40Ar/39Ar ages, paleomagnetism and geodynamic implications,” in The Central Atlantic Magmatic Province; Insights from Fragments of Pangea, Vol. 136 of Geophys. Monogr. Ser., Ed. by W. E. Hames, J. G. Mchone, P. R. Renne, and C. R. Ruppel (AGU, Washington, 2003), pp. 209–226.

    Google Scholar 

  21. O. Eldholm, J. Thiede, and E. Taylor “Evolution of the Vøring volcanic margin,” in Vol. 104 of Proc. ODP, Sci. Results (College Station, TX, 1989), pp. 1033–1065.

    Google Scholar 

  22. T. Ewart, J. S. Marsh, S. C. Milner, A. R. Duncan, B. S. Kamber, and R. A. Armstrong, “Petrology and geochemistry of Early Cretaceous bimodal continental flood volcanism of the NW Etendeka, Namibia. Pt. 1: Introduction, mafic lavas and re-evaluation of mantle source components,” J. Petrol. 45, 59–105 (2004).

    Article  Google Scholar 

  23. T. Ewart, S. C. Milner, R. A. Armstrong, and A. R. Duncan, “Etendeka volcanism of the Goboboseb Mountains and Messum Igneous Complex, Namibia. Part I: Geochemical evidence of Early Cretaceous Tristan Plume melts and the role of crustal contamination in the Paraná–Etendeka CFB,” J. Petrol. 39, 191–225 (1998). doi 10.1093/petroj/39.2.191

    Article  Google Scholar 

  24. J. G. Fitton, B. S. Hardason, R. M. Ellam, and G. Rogers, “Sr-, Nd-, and Pb-isotopic composition of volcanic rocks from the southeast Greenland margin at 63° N; temporal variation in crustal contamination during continental breakup,” in Vol. 152 of Proc. ODP, Sci. Results, Ed. by A. D. Saunders, H. C. Larsen, S. W. Wise (College Station, TX, 1998), pp. 351–357.

    Google Scholar 

  25. R. V. Fodor, S. B. Mukasa, and A. N. Sial, “Isotopic and trace-element indications of lithospheric and asthenospheric components in Tertiary alkalic basalts, northeastern Brazil,” Lithos 43, 197–217 (1998).

    Article  Google Scholar 

  26. R. V. Fodor, A. N. Sial, S. B. Mukasa, and E. H. McKee, “Petrology, isotope characteristics, and K–Ar ages of the Maranhao, northern Brazil, Mesozoic basalt province,” Contrib. Mineral. Petrol. 104, 555–567 (1990).

    Article  Google Scholar 

  27. K. Gallagher and C. J. Hawkesworth, Mantle plumes, continental magmatism and asymmetry in the South Atlantic,” Earth Planet. Sci. Lett. 123, 105–117 (1994).

    Article  Google Scholar 

  28. T. Gladczenko, K. Hinz, O. Eldholm, H. Meyer, S. Neben, and J. Skogseid, “South Atlantic volcanic margins,” J. Geol. Soc. London 154, 465–470 (1997).

    Article  Google Scholar 

  29. S. A. Gibson, R. N. Thompson, J. A. Day, S. E. Humphris, and A. P. Dickin, “Melt-generation processes associated with the Tristan mantle plume: Constraints on the origin of EM-1,” Earth. Planet. Sci. Lett. 237, 744–767 (2005).

    Article  Google Scholar 

  30. S. P. Grand, R. D. van der Hilst, S. Widiyantoro, “Global seismic tomography: A snapshot of convection in the Earth,” GSA Today 7 (4), 2–7 (1997).

    Google Scholar 

  31. Y. Gung and B. Romanowicz, “Superplumes from the core–mantle boundary to the base of the lithosphere: evidence from q tomography,” Science 296, 513–516 (2002).

    Article  Google Scholar 

  32. K. Hanghøj, M. Storey, and O. Stechtr, “An isotope and trace element study of the East Greenland Tertiary Dyke Swarm: Constraints on temporal and spatial evolution during continental rifting,” J. Petrol. 44, 2081–2112 (2003).

    Article  Google Scholar 

  33. C. Hawkesworth, A. Schersten, “Mantle plumes and geochemistry,” Chem. Geol. 241, 319–331 (2007).

    Article  Google Scholar 

  34. W. S. Holbrook, E. C. Reiter, G. M. Purdy, D. Sawyer, P. L. Stoffa, J. A. Austin, J. Oh, and J. Makris, “Seismic structure of the U.S. Mid-Atlantic continental margin,” J. Geophys. Res.: Solid Earth 99, 17871–17891 (1994).

    Article  Google Scholar 

  35. J. R. Hopper, T. Dahl-Jensen, W. S. Holbrook, H. C. Larsen, D. Lizarralde, J. Korenaga, G. M. Kent, and P. B. Kelemen, “Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening,” J. Geophys. Res.: Solid Earth 108, 2269–2291 (2003).

    Article  Google Scholar 

  36. P. E. Janney and P. R. Castillo, “Geochemistry of the oldest Atlantic oceanic crust suggests mantle plume involvement in the early history of the central Atlantic Ocean,” Earth Planet. Sci. Lett. 192, 291–302 (2001).

    Article  Google Scholar 

  37. M. B. Klausen and H. C. Larsen, “East Greenland coast-parallel dike swarm and its role in continental breakup,” in Volcanic Rifted Margins, Vol. 362 of Geol. Soc. Am., Spec. Pap., Ed. by M. A. Menzies, S. L. Klemperer, C. J. Ebinger, and J. Baker (Geol. Soc. Am., 2002), pp. 133–158.

    Chapter  Google Scholar 

  38. A. P. Le Roex and R. Lanyon, “Isotope and trace element geochemistry of Cretaceous Damaraland lamprophyres and carbonatites, Northwestern Namibia: Evidence for plume–lithosphere interactions,” J. Petrol. 39, 1117–1146 (1998).

    Article  Google Scholar 

  39. L. S. Marques, B. Dupre, and E. M. Piccirillo, “Mantle source compositions of the Parana Magmatic Province (southern Brazil): Evidence from trace element and Sr-Nd-Pb isotope geochemistry,” J. Geodyn. 28, 439–458 (1999).

    Article  Google Scholar 

  40. J. G. Marsh, “Satellite altimetry,” Rev. Geophys. Space Phys. 21, 574–580 (1983).

    Article  Google Scholar 

  41. R. Mjelde, J. Kasahara, H. Shimamura, A. Kanmimura, T. Kanazawa, S. Kodaira, T. Raum, and H. Shiobara, “Lower crustal seismic velocity-anomalies; magmatic underplating or serpentinised peridotite? Evidence from the Vøring Margin, NE Atlantic,” Mar. Geophys. Res. 23, 169–183 (2002).

    Article  Google Scholar 

  42. J. Mosar, E. Eide, P. T. Osmundsen, A. Sommaruga, and T. H. Torsvik, “Greenland-Norway separation: a geodynamic model for the North Atlantic,” Norw. J. Geol. 82, 281–298 (2002).

    Google Scholar 

  43. J. Oh, J. A. Austin, J. D. Phillips, M. F. Coffin, and P. L. Stoffa, “Seaward-dipping reflectors offshore the southeastern United States: Seismic evidence for extensive volcanism accompanying sequential formation of the Carolina trough and Blake Plateau basin,” Geology 23, 9–12 (1995).

    Article  Google Scholar 

  44. D. W. Peate and C. J. Hawkesworth, Lithospheric to asthenospheric transition in low-Ti flood basalts from Southern Paraná, Brazil,” Chem. Geol. 127, 1–24 (1996).

  45. D. W. Peate, C. J. Hawkesworth, M. M. S.Mantovani, N. W. Rogers, and S. P. Turner, “Petrogenesis and stratigraphy of the high-Ti/Y Urubici magma type in the Paraná Flood Basalt Province and implications for the nature of ‘Dupal’-type mantle in the South Atlantic Region,” J. Petrol. 40, 451–473 (1999).

    Article  Google Scholar 

  46. W. J. Pegram, “Development of continental lithospheric mantle as reflected in the chemistry of the Mesozoic Appalachian tholeiites, U.S.A.,” Earth Planet. Sci. Lett. 97, 316–331 (1990). doi 10.1016/0012821X(90)90049

    Article  Google Scholar 

  47. E. M. Piccirillo, L. Civetta, R. Petrini, A. Longinelli, G. Bellieni, P. Comin-Chiaramonti, L. S. Marques, and A. J. Melfi, “Regional variations within the Paraná flood basalts (Southern Brazil): Evidence for subcontinental mantle heterogeneity and crustal contamination,” Chem. Geol. 75, 103–122 (1989).

    Article  Google Scholar 

  48. S. Planke and O. Eldholm, “Seismic response and construction of seaward dipping wedges of flood basalts: Vøring volcanic margin,” J. Geophys. Res.: Solid Earth 99, 9263–9278 (1994).

    Article  Google Scholar 

  49. C. R. Ranero and J. Phipps Morgan, “Along-strike supply of volcanic rifted margins: A mechanism for sudden along-strike transitions between volcanic and nonvolcanic rifted margins, Geophys. Res. Abstr. 9, Pap. No. 08929 (2007).

  50. E. R. V. Rocha-Júnior, L. S. Marques, M. Babinski, A. J. R. Nardy, A. M. G. Figueiredo, and F. B. Machado, “Sr–Nd–Pb isotopic constraints on the nature of the mantle sources involved in the genesis of the high- Ti tholeiites from northern Paraná Continental Flood Basalts (Brazil),” J. South Am. Earth Sci. 46, 9–25 (2013).

    Article  Google Scholar 

  51. E. R. V. Rocha-Júnior, I. S. Puchtel, L. S. Marques, R. J. Walker, F. B. Machado, A. J. R. Nardy, M. Babinski, and A. M. G. Figueiredo, “Re–Os isotope and highly siderophile element systematics of the Paraná Continental flood basalts (Brazil),” Earth Planet. Sci. Lett. 337–338, 164–173 (2012).

    Article  Google Scholar 

  52. A. Saunders, H. Larsen, and J. Fitton, “Magmatic development of the southeast Greenland Margin and evolution of the Iceland plume: Geochemical constraints from Leg 152,” in Vol. 152 of Proc. ODP, Sci. Results, Ed. by A. D. Saunders, H. C. Larsen, S.W. Wise Jr. (College Station, TX, 1998), pp. 479–501.

    Google Scholar 

  53. R. W. Schlische, M. O. Withjack, and P. E. Olsen, “Relative timing of CAMP, rifting, continental breakup, and basin inversion: Tectonic significance,” in The Central Atlantic Magmatic Province: Insights from Fragments of Pangea, Vol 136 of Am. Geophys. Monogr., Ed. by W. J. Hames (2003), pp. 33–59.

    Chapter  Google Scholar 

  54. A. V. Sobolev, A. W. Hofmann, D. V. Kuzmin, G. M. Yaxley, N. T. Arndt, Sun-Lin Chung, L. V. Danyushevsky, T. Elliott, F. A. Frey, M. O. Garcia, A. A. Gurenko, V. S. Kamenetsky, A. C. Kerr, N. A. Krivolutskaya, V. V. Matvienkov, et al., “The amount of recycled crust in sources of mantle-derived melts,” Science 316, 412–417 (2007).

    Article  Google Scholar 

  55. P. N. Taylor and A. C. Morton, “Sr, Nd and Pb isotope geochemistry of the upper and lower volcanic series at site 642,” in Vol. 104 of Proc. ODP, Sci. Results (College Station, TX, 1989), pp. 429–435.

    Google Scholar 

  56. T. H. Torsvik, S. Rousse, C. Labails, and M. A. Smethurst, “A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin,” Geophys. J. Int. 177, 1315–1333 (2009). doi 10.1111/j.1365-246X.2009.04137.x

    Article  Google Scholar 

  57. R. B. Trumbull, D. L. Reid, C. H. De Beer, and R. L. Romer, “Magmatism and continental breakup at the west margin of southern Africa: A geochemical comparison of dolerite dikes from NW Namibia and the Western Cape,” South Afr. J. Geol. 110, 477–502 (2007).

    Article  Google Scholar 

  58. D. Zhao, “Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics,” Phys. Earth Planet. Inter. 146, 3–34 (2004).

    Article  Google Scholar 

  59. P. A. Ziegler, “Evolution of the Arctic-North Atlantic and the Western Tethys,” AAPG Mem. 43, 164–196 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Melankholina.

Additional information

Original Russian Text © E.N. Melankholina, N.M. Sushchevskaya, 2017, published in Geotektonika, 2017, No. 1, pp. 44–58.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Melankholina, E.N., Sushchevskaya, N.M. Development of continental margins of the Atlantic Ocean and successive breakup of the Pangaea-3 supercontinent. Geotecton. 51, 40–52 (2017). https://doi.org/10.1134/S0016852117010046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852117010046

Keywords

  • rifting
  • breakup
  • opening of the ocean
  • proximal and distal margins
  • magmatism
  • isotope composition