Skip to main content
Log in

On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface

  • Published:
Geotectonics Aims and scope

Abstract

The relative plume thermal power Ka = N/N 1 is used (N is the thermal power transferred from the plume base to its conduit and N 1 is the thermal power transferred from the plume conduit into the surrounding mantle in the steady-state heat conduction regime). Thermochemical mantle plumes with small (Ka < 1.15) and intermediate (1.15 < Ka < 1.9) thermal powers are formed at the core–mantle boundary beneath cratons in the absence of horizontal free-convection mantle flows beneath them, or in the presence of weak horizontal mantle flows. Thermochemical plumes reach the Earth’s surface when their relative thermal power is Ka > 1.15. The thermal and hydrodynamical structure of the plume conduit ascending from the core–mantle interface to the level from which the magmatic melt erupts on the Earth’s surface is presented. The model of two-stage eruption of the melt from the plume conduit to the surface is considered. The critical height of the massif above the plume roof, at which the eruption conduit supplying magmatic melt to the surface forms, is determined. The volume of melt erupting through the eruption conduit to the surface is estimated. The dependence of depth Δx from which the melt is transported to the surface on the plume diameter for a kinematic viscosity of ν = 0.5–2 m2/s is presented. In the case when the value Δx is larger than the depth starting from which diamond is stable (150 km), the melt from the plume conduit can transport diamonds to the Earth’s surface. The melt flow in the eruption conduit is considered as a turbulent flow in a cylindrical duct. The velocity of the melt flow in the eruption conduit and the time for the melt to be transported to the surface from a depth of Δx = 150 km for a kinematic viscosity of the melt in the eruption conduit ν v = 0.01–1 m2/s are determined. Tangential stress on the eruption conduit sidewall is estimated in cases of melt flow both in smooth and rough conduits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Gladkov, V. E. Distanov, A. A. Kirdyashkin, and A. G. Kirdyashkin, “Stability of a melt/solid interface with reference to a plume channel,” Fluid Dyn. 47, 433–447 (2012).

    Article  Google Scholar 

  2. N. L. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, Deep Geodynamics (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  3. N. L. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, “Parameters of hot spots and thermochemichal plumes,” Russ. Geol. Geophys. 46, 575–588 (2005).

    Google Scholar 

  4. N. L. Dobretsov, A. A. Kirdyashkin, A. G. Kirdyashkin, I. N. Gladkov, and N. V. Surkov, “Parameters of hot spots and thermochemichal plumes during their ascent and eruption,” Petrology 14, 477–491 (2006).

    Article  Google Scholar 

  5. J. B. Dawson, Kimberlites and Their Xenoliths (Springer, Berlin, 1980).

    Book  Google Scholar 

  6. A. A. Kirdyashkin, N. L. Dobretsov, and A. G. Kirdyashkin, “Thermochemical plumes,” Russ. Geol. Geophys. 45, 1005–1024 (2004).

    Google Scholar 

  7. A. A. Kirdyashkin, N. L. Dobretsov, and A. G. Kirdyashkin, “Heat and mass transfer in a thermochemical plume under an oceanic plate far from the mid-ocean ridge axis,” Izv., Phys. Solid Earth 44, 456–468 (2008).

    Article  Google Scholar 

  8. A. A. Kirdyashkin, N. L. Dobretsov, and A. G. Kirdyashkin, “Heat transfer between a thermochemicalplume channel and the surrounding mantle in the presence of horizontal mantle flow,” Izv., Phys. Solid Earth 45, 684–700 (2009).

    Article  Google Scholar 

  9. A. A. Kirdyashkin, N. L. Dobretsov, A. G. Kirdyashkin, I. N. Gladkov, and N. V. Surkov, “Hydrodynamic processes associated with plume rise and conditions for eruption conduit formation,” Russ. Geol. Geophys. 46, 869–885 (2005).

    Google Scholar 

  10. A. G. Kirdyashkin and A. A. Kirdyashkin, “Mantle thermochemical plumes and their influence on the formation of highlands,” Geotectonics 49, 332–341 (2015).

    Article  Google Scholar 

  11. A. G. Kirdyashkin, A. A. Kirdyashkin, I. N. Gladkov, and V. E. Distanov, “Experimental modeling of the effect of relative thermal power on the shape of a plume conduit and the structure of free-convection flow in it,” Russ. Geol. Geophys. 53, 689–697 (2012).

    Article  Google Scholar 

  12. S. P. Clark, “Viscosity,” in Handbook of Physical Constants, Vol. 97 of Geol. Soc. Am., Mem., Ed. by S. P. Clark, (Geol. Soc. Am., New York, 1966).

    Google Scholar 

  13. V. D. Kotelkin and L. I. Lobkovsky, “The Myasnikov global theory of the evolution of planets and the modern thermochemical model of the Earth’s evolution,” Izv., Phys. Solid Earth 43, 24–41 (2007).

    Article  Google Scholar 

  14. V. D. Kotelkin and L. I. Lobkovskii, “Thermochemical theory of geodynamical evolution,” Dokl. Earth Sci. 438, 622–626 (2011).

    Article  Google Scholar 

  15. V. D. Kotelkin and L. I. Lobkovsky, “Hydrodynamical theory of geodynamical evolution,” Vestn. Nizhegorod. Univ., No. 4, 2269–2271 (2011).

    Google Scholar 

  16. V. P. Trubitsyn, “Thermochemical convection in the mantle with oceanic crust recirculation,” Izv., Phys. Solid Earth 46, 922–930 (2010).

    Article  Google Scholar 

  17. V. P. Trubitsyn, “Generation of mantle plumes in the peripherals of giant hot provinces on the mantle bottom beneath supercontinents,” Dokl. Earth Sci. 445, 1025–1028 (2012).

    Article  Google Scholar 

  18. V. P. Trubitsyn and E. V. Kharybin, “Thermochemical mantle plumes,” Dokl. Earth Sci. 435, 1656–1658 (2010).

    Article  Google Scholar 

  19. H. Schlichting, Grenzschicht-Theorie (G. Braun, Karlsruhe, 1969), 5th ed.

    Google Scholar 

  20. E. Atikinson and R. Pryde, Seismic Investigation of Selected Kimberlite Pipes in the Buffalo Head Hills Kimberlite Field, North-Central Alberta: EUB/AGS Spec. Rep. 079 (Alberta Energy and Utilities Board, 2006).

    Google Scholar 

  21. A. D. Brandon and R. J. Walker, “The debate over core–mantle interaction,” Earth Planet. Sci. Lett. 232, 211–225 (2005).

    Article  Google Scholar 

  22. I. H. Campbell and R. W. Griffiths, “Implications of mantle plume structure for the evolution of flood basalts,” Earth Planet. Sci. Lett. 99, 79–93 (1990).

    Article  Google Scholar 

  23. N. V. Chalapathi Rao and B. Lehmann, “Kimberlites, flood basalts and mantle plumes: New insights from the Deccan Large Igneous Province,” Earth Sci. Rev. 107, 315–324 (2011).

    Article  Google Scholar 

  24. M. O. Chevrel, T. Platz, E. Hauber, D. Baratoux, Y. Lavallee, and D. B. Dingwell, “Lava flow rheology: A comparison of morphological and petrological methods,” Earth Planet. Sci. Lett. 384, 109–120 (2013).

    Article  Google Scholar 

  25. K. D. Collerson, Q. Williams, A. E. Ewart, and D. T. Murphy, “Origin of HIMU and EM-1 domains sampled by ocean island basalts, kimberlites and carbonatites: The role of CO2-fluxed lower mantle melting in thermochemical upwellings,” Phys. Earth Planet. Inter. 181, 112–131 (2010).

    Article  Google Scholar 

  26. D. L. Coulliette and D. E. Loper, “Experimental, numerical and analytical models of mantle starting plumes,” Phys. Earth Planet. Inter. 92, 143–167 (1995).

    Article  Google Scholar 

  27. D. B. Dingwell, P. Courtial, D. Giordano, and A. R. Nichols, “Viscosity of peridotite liquid,” Earth Planet. Sci. Lett. 226, 127–138 (2004).

    Article  Google Scholar 

  28. N. L. Dobretsov, A. A. Kirdyashkin, A. G. Kirdyashkin, V. A. Vernikovsky, and I. N. Gladkov, “Modelling of thermochemical plumes and implications for the origin of the Siberian traps,” Lithos 100, 66–92 (2008).

    Article  Google Scholar 

  29. Y. Fedortchouk, S. Matveev, and J. A. Carlson, “H2O and CO2 in kimberlitic fluid as recorded by diamonds and olivines in several Ekati Diamond Mine kimberlites, Northwest Territories, Canada,” Earth Planet. Sci. Lett. 289, 549–559 (2010).

    Article  Google Scholar 

  30. M. Field, J. Stiefenhofer, J. Robey, and S. Kurszlaukis, “Kimberlite-hosted diamond deposits of southern Africa: A review,” Ore Geol. Rev. 34, 33–75 (2008).

    Article  Google Scholar 

  31. E. J. Garnero, “Heterogeneity of the lowermost mantle,” Ann. Rev. Earth Planet. Sci. 28, 509–537 (2000).

    Article  Google Scholar 

  32. E. J. Garnero, “A new paradigm for Earth’s core–mantle boundary,” Science 304, 834–836 (2004). doi 10.1126/science.1097849

    Article  Google Scholar 

  33. E. J. Garnero and A. McNamara, “Structure and dynamics of Earth’s lower mantle,” Science 320, 626–628 (2008). doi doi 10.1126/science.1148028

    Article  Google Scholar 

  34. R. W. Griffiths and I. H. Campbell, “Stirring and structure in mantle starting plumes,” Earth Planet. Sci. Lett. 99, 66–78 (1990).

    Article  Google Scholar 

  35. A. L. Jaques, “Kimberlite and lamproite diamond pipes,” AGSO J. Aust. Geol. Geophys. 17 4, 153–162 (1998).

    Google Scholar 

  36. C. Jaupart and J.-C. Mareschal, “Heat flow and thermal structure of the lithosphere,” in Treatise on Geophysics, Vol. 6: Crust and Lithosphere Dynamics, Ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 217–251.

    Google Scholar 

  37. C. Jaupart and J.-C. Mareschal, “Constraints on crustal heat production from heat flow data,” in Treatise on Geochemistry, Vol. 4: The Crust, Ed. by K. Turekian and H. Holland (Elsevier, Amsterdam, 2014), pp. 53–73.

    Chapter  Google Scholar 

  38. E. Kaminski and C. Jaupart, “Laminar starting plumes in high-Prandtl-number fluids,” J. Fluid Mech. 478, 287–298 (2003).

    Article  Google Scholar 

  39. T. Katsura, A. Yoneda, D. Yamazaki, T. Yoshino, and E. Ito, “Adiabatic temperature profile in the mantle,” Phys. Earth Planet. Inter. 183, 212–218 (2010).

    Article  Google Scholar 

  40. C. S. Kennedy and G. C. Kennedy, “The equilibrium boundary between graphite and diamond,” J. Geophys. Res. 81, 2467–2470 (1976).

    Article  Google Scholar 

  41. B. A. Kjarsgaard, “Kimberlite pipe models: significance for exploration,” in Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, Toronto, Canada, 2007, Ed. by B. Milkereit (Toronto, 2007), pp. 667–677.

    Google Scholar 

  42. I. Kumagai, A. Davaille, and K. Kurita, “On the fate of thermally buoyant mantle plumes at density interfaces,” Earth Planet. Sci. Lett. 254, 180–193 (2007).

    Article  Google Scholar 

  43. E. Lev, M. Spiegelman, R. J. Wysocki, and J. A. Karson, “Investigating lava flow rheology using video analysis and numerical flow models,” J. Volcanol. Geotherm. Res. 247–248, 62–73 (2012).

    Article  Google Scholar 

  44. X. Li, R. Kind, K. Priestley, S. V. Sobolev, F. Tilmann, X. Yuan, and M. Weber, “Mapping the Hawaiian plume conduit with converted seismic waves,” Nature 405, 938–941 (2000).

    Article  Google Scholar 

  45. S.-C. Lin and P. E. van Keken, “Multiple volcanic episodes of flood basalts caused by thermochemical plumes,” Nature 436, 250–252 (2005).

    Article  Google Scholar 

  46. S.-C. Lin and P. E. van Keken, “Dynamics of thermochemical plumes: 1. Plume formation and entrainment of a dense layer,” Geochem. Geophys. Geosyst. 7, Q02006 (2006). doi: 10.1029/2005GC001071

    Article  Google Scholar 

  47. S.-C. Lin and P. E. van Keken, “Dynamics of thermochemical plumes: 2. Complexity of plumes structures and implications for the mapping of mantle plumes,” Geochem. Geophys. Geosyst. 7, Q03003 (2006). doi: 10.1029/2005GC001072

    Article  Google Scholar 

  48. S.-C. Lin and P. E. van Keken, “Deformation, stirring and material transport in thermochemical plumes,” Geophys. Res. Lett. 33, L20306 (2006). doi: 10.1029/2006GL027037

    Article  Google Scholar 

  49. A. K. McNamara and S. Zhong, “The influence of thermochemical convection on the fixity of mantle plumes,” Earth Planet. Sci. Lett. 222, 485–500 (2004).

    Article  Google Scholar 

  50. C. Michaut, C. Jaupart, and D. R. Bell, “Transient geotherms in Archean continental lithosphere: New constraints on thickness and heat production of the subcontinental lithospheric mantle,” J. Geophys. Res. 112, B04408 (2007). doi: 10.1029/2006JB004464

    Article  Google Scholar 

  51. P. Olson and H. Singer, “Creeping plumes,” J. Fluid Mech. 158, 511–531 (1985).

    Article  Google Scholar 

  52. H. Pinkerton and G. Norton, “Rheological properties of basaltic lavas at sub-liquidus temperatures: Laboratory and field measurements on lavas from Mount Etna,” J. Volcanol. Geotherm. Res. 68, 307–323 (1995).

    Article  Google Scholar 

  53. S. K. Rowland and G. P. L. Walker, “Mafic-crystal distributions, viscosities, and lava structures of some Hawaiian lava flows,” J. Volcanol. Geotherm. Res. 35, 55–66 (1988).

    Article  Google Scholar 

  54. R. L. Rudnick, W. F. McDonough, and R. J. O’Connell, “Thermal structure, thickness and composition of continental lithosphere,” Chem. Geol. 145, 395–411 (1998).

    Article  Google Scholar 

  55. H. Samuel and D. Bercovici, “Oscillating and stagnating plumes in the Earth’s lower mantle,” Earth Planet. Sci. Lett. 248, 90–105 (2006).

    Article  Google Scholar 

  56. H. Sato, “Viscosity measurement of subliquidus magmas,” J. Mineral. Petrol. Sci. 100, 133–142 (2005).

    Article  Google Scholar 

  57. B. Schott and D. A. Yuen, “Influences of dissipation and rheology on mantle plumes coming from the D”-layer,” Phys. Earth Planet. Inter. 146, 139–145 (2004).

    Article  Google Scholar 

  58. G. Schubert, D. L. Turcotte, and P. Olson, Mantle Convection in the Earth and Planets (Cambridge Univ. Press, Cambridge, 2001).

    Book  Google Scholar 

  59. R. S. J. Sparks, L. Baker, R. J. Brown, M. Field, J. Schumacher, G. Stripp, and A. Walters, “Dynamical constraints on kimberlite volcanism,” J. Volcanol. Geotherm. Res. 155, 18–48 (2006).

    Article  Google Scholar 

  60. C. A. Stein, “Heat flow of the Earth,” in Global Earth Physics: A Handbook of Physical Constants, Ed. by T. J. Ahrens (Am. Geophys. Union, 1995), pp. 144–158.

    Google Scholar 

  61. T. H. Torsvik, K. Burke, B. Steinberger, S. J. Webb, and L. D. Ashwal, “Diamonds sampled by plumes from the core–mantle boundary,” Nature 466, 352—357 (2010). doi doi 10.1038/nature09216

  62. J. Vatteville, P. E. van Keken, A. Limare, and A. Davaille, “Starting laminar plumes: Comparison of laboratory and numerical modeling,” Geochem. Geophys. Geosyst. 10, Q12013 (2009). doi: 10.1029/2009GC002739

    Article  Google Scholar 

  63. A. Vona, C. Romano, D. B. Dingwell, and D. Giordano, “The rheology of crystal-bearing basaltic magmas from Stromboli and Etna,” Geochim. Cosmochim. Acta 75, 3214–3236 (2011).

    Article  Google Scholar 

  64. U. Walzer, R. Hendel, and J. Baumgardner, “The effects of a variation of the radial viscosity profile on mantle evolution,” Tectonophysics 384, 55–90 (2004).

    Article  Google Scholar 

  65. J. A. Whitehead and D. S. Luther, “Dynamics of laboratory diapir and plume models,” J. Geophys. Res. 80 (B5), 705–717 (1975).

    Article  Google Scholar 

  66. T. Yang and R. Fu, “Thermochemical piles in the lowermost mantle and their evolution,” Phys. Earth Planet. Inter. 236, 109–116 (2014).

    Article  Google Scholar 

  67. T. Yang and W. Leng, “Dynamics of hidden hotspot tracks beneath the continental lithosphere,” Earth Planet. Sci. Lett. 401, 294–300 (2014).

    Article  Google Scholar 

  68. S. Zhong, “Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature and upper mantle temperature,” J. Geophys. Res.: Solid Earth 111, B04409 (2006). doi: 10.1029/2005JB003972

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kirdyashkin.

Additional information

Original Russian Text © A.A. Kirdyashkin, A.G. Kirdyashkin, 2016, published in Geotektonika, 2016, No. 2, pp. 78–92.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirdyashkin, A.A., Kirdyashkin, A.G. On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface. Geotecton. 50, 209–222 (2016). https://doi.org/10.1134/S0016852116020059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852116020059

Keywords

Navigation