Skip to main content
Log in

Role of radiogenic heat generation in surface heat flow formation

  • Published:
Geotectonics Aims and scope

Abstract

Heat generation due to decay of long-lived radioactive isotopes is considered in the Earth’s crust of the Archean–Proterozoic and Paleozoic provinces of Eurasia and North America. The heat flow that forms in the mantle is calculated as the difference between the heat flow observed at the boundary of the solid Earth and radiogenic heat flow produced in the crust. The heat regime in regions with anomalously high radiogenic heat generation is discussed. The relationship between various heat flow components in the Precambrian and Phanerozoic provinces has been comparatively analyzed, and the role of erosion of the surfaceheat- generating layer has been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Andreev, V. V. Brodovoi, and V. I. Gol’dshmidt, “Deep structure of the Earth’s crust of Kazakhstan and technique of its study,” Izv. Akad. Nauk Kaz. SSR, Ser. Geol., No. 4, 3–15 (1964).

    Google Scholar 

  2. R. M. Antonyuk, G. F. Lyapichev, N. G. Markova, T. G. Pavlova, O. M. Rozen, S. G. Samygin, S. G. Tokmacheva, V. I. Shuzhanov, and I. G. Shcherba, “Structures and evolution the Earth’s crust of Central Kazakhstan,” Geotektonika, No. 5, 71–82 (1977).

    Google Scholar 

  3. N. I. Arshavskaya, “On lineiar dependence between heat flow and heat generation in shields,” in Eksperimental’noe i teoreticheskoe izuchenie teplovykh potokov (Nauka, Moscow, 1979), pp. 177–194.

    Google Scholar 

  4. V. T. Balobaev, Geothermics of the Cryozone within the Lithosphere of North Asia (Nauka, Novosibirsk, 1991) [in Russian].

  5. V. G. Bogolepov, N. A. Gulyaeva, and D. A. Safin, “On the technique of searching for ore bodies at Akchatau rare-metal deposit, Central Kazakhstan,” in Mineralogiya i geokhimiya vol’framovykh mestorozhdenii (Nauka, Leningrad, 1975), pp. 55–65.

  6. G. M. Baranov, A. A. Smyslov, and M. G. Kharlamov, “Radioactive elements content in intrusive rocks of the Selety-Korzhunkol’ area, Central Kazakhstan,” in Vol. 95 of Tr. VSEGEI, Nov. Ser. (1963), pp. 61–69.

    Google Scholar 

  7. N. S. Boganik, Radiogenic Heat of the Earth’s Crust in the East European Craton and Its Folded Framing (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  8. V. A. Golubev, S. V. Lysak, and R. P. Dorofeeva, “Teplovoi potok Baikal’skoi riftovoi zony,” in Teplovoe pole nedr Sibiri (Nauka, Novosibirsk, 1987), pp. 121–137.

    Google Scholar 

  9. N. L. Dobretsov, V. G. Melamed, and V. N. Sharapov, “Dynamics of regional metamorphism for the model of simple immersion of the oceanic crust,” Geol. Geofiz., No. 10, 16–24 (1970).

    Google Scholar 

  10. O. S. Klyuev, “Geochemical search for hidden mineralization: A case study of the Akchatau greisen deposit Central Kazakhstan,” in Geokhimicheskie metody prognozirovaniya i poiskov rudnykh mestorozhdenii (IMGRE-ONTI, Moscow, 1976), pp. 32–53.

    Google Scholar 

  11. V. I. Kovalenko, A. A. Mossakovskii, and V. V. Yarmolyuk, “The problem of reconstructing the geodynamical settings and petrochemical zonality: A case study of the Mongolian Late Paleozoic volcanic belt,” Geotektonika, No. 6, 13–29 (1983).

    Google Scholar 

  12. A. A. Kremenetskii, L. N. Ovchinnikov, and S. Yu. Milanovskii, “Geothermal studies and the heat generation model for the Precambrian crust of northeastern Baltic Shield,” in Geokhimiya glubinnykh porod (Nauka, Moscow, 1986), pp. 131–149.

    Google Scholar 

  13. R. I. Kutas, Heat Flow Field Pole and Thermal Model of the Earth’s Crust (Nauk. Dumka, Kiev, 1978) [in Russian].

    Google Scholar 

  14. R. I. Kutas and V. V. Gordienko, “Teplovoe pole Karpat i nekotorye voprosy geotermii,” in Vol. 46 of Tr. Mosk. O-va Ispyt. Prir., Otd. Geol. (Nauka, Moscow, 1972), pp. 75–80.

    Google Scholar 

  15. B. A. Mamyrin, and I. N. Tolstikhin, Helium Isotopes in Nature (Energoizdat, Moscow, 1981) [in Russian].

    Google Scholar 

  16. G. A. Mashkovtsev, A. K. Konstantinov, A. K. Miguta, M. V. Shumilin, and V. N. Shchetochkin, Uranium of the Russian Interiors (VIMS, Moscow, 2010) [in Russian].

    Google Scholar 

  17. Metamorphic Complexes of Asia, Ed. by V. S. Sobolev (Nauka, Novosibirsk, 1977) [in Russian].

  18. E. L. Mozoleva, “Heat generation of rocks in Tien Shan,” in Geotermiya seismichnykh i aseismichnykh zon (Nauka, Moscow, 1993), pp. 238–245.

    Google Scholar 

  19. A. D. Nozhkin, Yu. M. Puzankov, N. V. Popov, O. M. Turkina, V. I. Berezkin, L. M. Bogomolova, A. N. Zedgenizov, V. I. Kitsul, A. P. Smelov, V. V. Stognii, V. L. Duk, A. B. Kotov, V. I. Medvedev, and A. M. Koveshnikov, “Heat generation in the Earth’s crust of the Aldan Shield,” in Temperatura, kriolitozona i radiogennaya teplogeneratsiya v zemnoi kore Severnoi Azii, Vol. 821 of Tr. OIGGM (Novosibirsk, 1994), pp. 101–112.

    Google Scholar 

  20. E. G. Panova, A. P. Kazak, and K. E. Yakobson, “Terrigenous sedimentation in the main Devonian field,” Litosfera, No. 4, 19–31 (2003).

    Google Scholar 

  21. B. G. Polyak and Ya. B. Smirnov, “Heat flow in the continents,” Dokl. Akad. Nauk SSSR 168, 170–172 (1966).

    Google Scholar 

  22. B. G. Polyak and Ya. B. Smirnov, “Relationship between the deep heat flow and the tectonic structure of the continents,” Geotektonika, No. 4, 3–19 (1968).

    Google Scholar 

  23. B. G. Polyak, I. N. Tolstikhin, and V. P. Yakutseni, “Izotopnyi sostav geliya i teplovoi potokgeokhimicheskii i geofizicheskii aspekty tektogeneza,” Geotektonika, No. 5, 3–23 (1979a).

    Google Scholar 

  24. B. G. Polyak, E. M. Prasolov, G. I. Buachidze, V. I. Kononov, B. A. Mamyrin, L. I. Surovtseva, L. I. Khabarin, and V. S. Yudenich, “Isotopic distribution of helium and argon isotopes of fluids in the Alpine-Apennine region and its relationship to volcanism,” Dokl. Akad. Nauk SSSR 247, 1220–1225 (1979b).

    Google Scholar 

  25. V. E. Sal’nikov, Geothermal Regime of South Urals (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  26. A. A. Smyslov, U. I. Moiseenko, and T. Z. Chadovich, Thermal Regime and Radioactivity of the Earth (Nedra, Leningrad, 1979) [in Russian].

    Google Scholar 

  27. Ya. B. Smirnov, “Terrestrial heat flow and problems of geosyncline energy,” in Vol. 46 of Tr. Mosk. O-va Ispyt. Prir., Otd. Geol. (Nauka, Moscow, 1972), pp. 52–74.

    Google Scholar 

  28. Ya. B. Smirnov, Thermal Regime of Tectonosphere: Explanatory Note to the Heat Flow Map of the USSR, 1: 10000000 (GUGK, Moscow, 1980) [in Russian].

    Google Scholar 

  29. Thermal Field of the Interiors in Siberia, Ed. by E. E. Fotiady (Nauka, Novosibirsk, 1987) [in Russian].

  30. M. D. Khutorskoi, Geothermics of the Central-Asian Fold Belt (RUDN, Moscow, 1996) [in Russian].

    Google Scholar 

  31. M. D. Khutorskoi, V. A. Golubev, S. V. Kozlovtseva, M. M. Mitnik, and V. V. Yarmolyuk, Thermal Regime of the Interiors in People Republic of Mongolia (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  32. J. F. Albert-Beltran, “Heat flow and temperature gradient data from Spain,” in Terrestrial Heat Flow in Europe (Springer, Berlin, 1979), pp. 261–266.

    Chapter  Google Scholar 

  33. I. M. Artemieva and W. D. Mooney, “Thermal thickness and evolution of Precambrian lithosphere: A global study,” J. Geophys. Res.: Solid Earth 106, 16387–16414 (2001).

    Article  Google Scholar 

  34. L. D. Ashwal, P. Morgan, S. A. Kelly, and J. A. Percival, “Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producting elements,” Earth Planet. Sci. Lett. 85, 439–450 (1987).

    Article  Google Scholar 

  35. F. Birch, “The present state of geothermal investigation,” Geophysics, 19, 645–659 (1954).

    Article  Google Scholar 

  36. F. Birch, R. F. Roy, and E. R. Decker, “Heat flow and thermal history in New England and New York,” in Studies in Appalachian Geology (New York, 1968), Ch. 33, pp. 437–451.

    Google Scholar 

  37. V. Cermak, “Heat flow investigation in Czechoslovakia,” in Geoelectrical and Geothermal Studies (East-Central Europe and Soviet Asia), KAPG Geophys. Monogr., Ed. by A. Adam (Akad. Kiado, Budapest, 1976), pp. 414–424.

    Google Scholar 

  38. Chapman D. and Pollack H., “Global heat flow: A new look”, Planet. Sci. Lett. 28, 23–32 (1976).

    Article  Google Scholar 

  39. S. P. Clark and E. Jaeger, “Denudation rate in the Alps from geochronology date and heat flow date,” Am. J. Sci. 267, 1143–1160 (1969).

    Article  Google Scholar 

  40. S. T. Crough and G. A. Thompson, “Thermal model of continental lithosphere,” J. Geophys. Res. 81, 4857–4862 (1976).

    Article  Google Scholar 

  41. P. C. England and S. W. Richardson, “The influence of erosion upon the mineral facies of rocks from different metamorphic environments,” J. Geol. Soc. London 134, 201–213 (1977).

    Article  Google Scholar 

  42. D. M. Fountain, M. H. Salisbury, and K. P. Furlong, “Heat production and thermal conductivity of rocks from the Pikwitonei-Sachigo continental crust section, central Manitoba: Implication for the thermal structure of Archean crust,” Can. J. Earth Sci. 24, 1583–1594 (1987).

    Article  Google Scholar 

  43. K. P. Furlong and D. S. Chapman, “Crustal heterogeneities and the thermal structure of the continental crust,” Geophys. Res. Lett. 14, 314–317 (1987).

    Article  Google Scholar 

  44. R. G. Gregory and M. P. Durrance, “Helium, radon and hydrothermal circulation associated with the Carmenwallis radiothermal granite of southwest England,” J. Geophys. Res.: Solid Earth 92, 12567–12586 (1987).

    Article  Google Scholar 

  45. V. M. Hamza and R. K. Verma, “The relationship of heat flow with the age of basement rocks,” Bull. Volcanol. 33, 123–152 (1969).

    Article  Google Scholar 

  46. D. R. Hilton, E. R. Oxburg, and R. K. O’Nions, “Fluid flow through high heat flow granites: Constraints imposed by He and Rn data,” in High Heat Production (HHP) Granites, Hydrothermal Circulation and Ore Genesis (Inst. of Min. and Metal., London, 1985), pp. 135–142.

    Google Scholar 

  47. D. R. Hilton and H. Craig, “A helium isotope transect along the Indonesian archipelago,” Nature 342, 906–908 (1989).

    Article  Google Scholar 

  48. D. R. Hilton, K. Hammerschmidt, S. Teufel, and H. Friedrichsen, “Helium isotope characteristics of Andean geothermal fluids and lavas,” Earth. Planet. Sci. Lett. 120, 265–282 (1993).

    Article  Google Scholar 

  49. C. Jaupart and J. C. Mareshal, “Constraints on crustal heat production from heat flow data,” in Treatise on Geochemistry, Vol. 3: The Crust, Ed. by R. L. Rudnick (Pergamon, New York, 2003), pp. 65–84.

    Chapter  Google Scholar 

  50. C. Jaupart, J. G. Sclater, and G. Simmons, “Heat flow studies: Constraints on the distribution of uranium, thorium and potassium in the continental crust,” Earth Planet. Sci. Lett. 52, 328–344 (1981).

    Article  Google Scholar 

  51. M. Q. W. Jones, “Heat flow and heat production in the Namaqua mobile belt, South Africa,” J. Geophys. Res.: Solid Earth 92, 6273—6289 (1987).

  52. R. A. Ketcham, “Distribution of heat production elements in the upper and middle crust of southern and west central Arizona: Evidence from the core complexes,” J. Geophys. Res.: Solid Earth 101, 13611–13632 (1996).

    Article  Google Scholar 

  53. A. H. Lachenbruch, “Preliminary geothermal model of the Sierra Nevada,” J. Geophys. Res. 73, 6977–6989 (1968).

    Article  Google Scholar 

  54. A. H. Lachenbruch and J. H. Sass, “Models of an extending lithosphere and heat flow in the Basin and Range province,” in Cenozoic Tectonics and Regional Geophysics, Vol. 152 of Geol. Soc. Am., Mem., Ed. by R. B. Smith and G. P. Eaton (1978), pp. 209–250.

    Chapter  Google Scholar 

  55. M. K. Lee, G. C. Brown, P. C. Webb, J. Wheildon, and K. E. Rollin, “Heat flow, heat production and thermotectonic setting in mainland UK,” J. Geol. Soc., London 144, 35–42 (1987).

    Article  Google Scholar 

  56. J. C. Mareshal, C. Jaupart, and C. Gariepy, “Heat flow and deep thermal structure near the southeastern edge of the Canadian Shield.” Can. J. Earth Sci. 37, 399–414 (2000).

    Article  Google Scholar 

  57. D. J. Martel, R. K. O’Nions, D. R. Hilton, and E. R. Oxburgh, “The role of element distribution in production and release of radiogenic helium: The Carmenwallis Granite, Southwestern England,” Chem. Geol. 88, 207–221 (1990).

    Article  Google Scholar 

  58. S. M. McLennan and S. R. Taylor, “Heat flow and the chemical composition of continental crust,” J. Geol. 104, 377–396 (1996).

    Article  Google Scholar 

  59. P. Morgan and J. H. Sass, “Thermal regime of the continental lithosphere,” J. Geodyn. 1, 143–166 (1984).

    Article  Google Scholar 

  60. L. O. Nicolayson, R. J. Hart, and N. H. Gale, “The Vredefort radioelement profile extended to supracrustal strata at Carletonville, with implications for continental heat flow,” J. Geophys. Res.: Solid Earth 86, 10653–10661 (1981).

    Article  Google Scholar 

  61. A. A. Nyblade and H. N. Pollack, “A global analysis of heat flow from Precambrian terrains: implications for the thermal structure of Archean and Proterozoic lithosphere,” J. Geophys. Res.: Solid Earth 98, 12207–12218 (1993).

    Article  Google Scholar 

  62. F. Parello, P. Allard, W. D’Alessandro, C. Federico, P. Jean-Baptiste, and O. Catani, “Isotope geochemistry of the Panterlleria volcanic fluids, Sicily Channel rift: A mantle volatile end-member for volcanism in southern Europe,” Earth. Planet. Sci. Lett. 180, 325–339 (2000).

    Article  Google Scholar 

  63. C. Pinet and C. Jaupart, “The vertical distribution of radiogenic heat production in the Precambrian crust of Norway and Sweden: Geothermal implications,” Geophys. Res. Lett. 14, 260–263 (1987).

    Article  Google Scholar 

  64. C. Pinet, C. Jaupart, and J. C. Mareshal, “Heat flow and structure of the lithosphere in the Eastern Canadian shield,” J. Geophys. Res.: Solid Earth 96, 19941–19963 (1991).

    Article  Google Scholar 

  65. R. U. M. Rao, G. V. Rao, and G. K. Reddy, “A dependence of continental heat flow–fantasy and facts,” Earth. Planet. Sci. Lett. 59, 288—302 (1982).

  66. S. W. Richardson and E. R. Oxburgh, “Heat flow, radiogenic heat production and crustal temperature in England and Wales,” J. Geol. Soc. London 135, 322–327 (1978).

    Article  Google Scholar 

  67. R. F. Roy, D. D. Blackwell, and F. Birch, “Heat generation of plutonic rocks and continental heat flow provinces,” Earth. Planet. Sci. Lett. 5 1–12 (1968).

    Article  Google Scholar 

  68. R. F. Roy, D. D. Blackwell, and E. R. Decker, “Continental heat flow,” in The Nature of the Solid Earth (McGraw-Hill, New York, 1972), pp. 506–543.

    Google Scholar 

  69. S. Roy and R. U. M. Rao, “Heat flow in the Indian shield,” J. Geophys. Res.: Solid Earth 105, 25587–25604 (2000).

    Article  Google Scholar 

  70. L. Royden and K. V. Hodges, “A technique for analyzing the thermal and uplift histories of eroding orogenic belts: A Scandinavian example,” J. Geophys. 89, 7091–7106 (1984).

    Article  Google Scholar 

  71. R. L. Rudnick and D. M. Fountain, “Nature and composition of the continental crust: a lower crustal perspective,” Rev. Geophys. 33, 267–309 (1995).

    Article  Google Scholar 

  72. R. L. Rudnick, W. F. McDonough, and R. J. O’Connell, “Thermal structure, thickness and composition of continental lithosphere,” Chem. Geol. 145, 395–411 (1998).

    Article  Google Scholar 

  73. J. H. Sass, D. D. Blackwell, D. S. Chapman, and S. Roy, “Heat flow of the crust of the United States,” in Physical Properties of Rocks and Minerals (McGraw-Hill, New York, 1981), pp. 503–548.

    Google Scholar 

  74. J. Sclater and J. Francheteau, “The implication of terrestrial heat flow observations on current tectonics and geochemical models of the crust and upper mantle of the earth,” Geophys. J. R. Astron. Soc. 20, 509–542 (1970).

    Article  Google Scholar 

  75. J. Sclater, C. Jaupart, and D. Galson, “The heat flow through oceanic and continental crust and the heat loss of the Earth,” Rev. Geophys. 18, 269–311 (1980).

    Article  Google Scholar 

  76. J. Sclater, B. Parsons, and C. Jaupart, “Oceans and continents: Similarities and differences in the mechanism and heat flow,” J. Geophys. Res.: Solid Earth 86, 11535–11552 (1981).

    Article  Google Scholar 

  77. D. F. Stacey, Physics of the Earth (Wiley, New York, 1969).

    Google Scholar 

  78. C. A. Swanberg, M. D. Chessman, and G. Simmons, “Heat flow generation studies in Norway,” Tectonophysics 23, 31–48 (1974).

    Article  Google Scholar 

  79. H. Y. Tammemagi and J. Wheildon, “Terrestrial heat flow and heat generation in South-West England,” Geophys. J. R. Astron. Soc. 38, 83–94 (1974).

    Article  Google Scholar 

  80. I. N. Tolstikhin and J. D. Kramers, The Evolution of Matter From the Big Bang to Present Day (Cambridge Univ. Press, Cambridge, 2009).

    Google Scholar 

  81. F. J. Turner, Metamorphic Petrology: Mineralogical and Field Aspects (McGraw-Hill, New York, 1968).

    Google Scholar 

  82. I. Vitorello and H. Pollack, “On the variation of continental heat flow with age and thermal evolution of continents,” J. Geophys. Res.: Solid Earth 85, 983–995 (1980).

    Article  Google Scholar 

  83. B. L. Weaver and J. Tarney, “Empirical approach to estimating the composition of the continental crust,” Nature 59, 575–577 (1984).

    Article  Google Scholar 

  84. P. C. Webb, A. G. Tindle, S. D. Barritt, G. C. Brown, and J. F. Miller, “Radiothermal granites in the United Kingdom,” in High Heat Production (HHP) Granites, Hydrothermal Circulation and Ore Genesis (Inst. of Min. and Metal., London, 1985), pp. 409–424.

    Google Scholar 

  85. J. Wheildon, M. F. Francis, J. R. L. Ellis, and A. Thomas-Betts, “Exploration and interpretation of the SW England geothermal anomaly,” in Proceedings of 2nd International Seminar on Results of EC Geothermal Energy Resources, Strasbourg, 1980, Ed. by A. S. Strub and P. Ungemach, (Comm. Eur. Communities, Strasbourg, 1980), pp. 456–463.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Khutorskoi.

Additional information

Original Russian Text © M.D. Khutorskoi, B.G. Polyak, 2016, published in Geotektonika, 2016, No. 2, pp. 43–61.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khutorskoi, M.D., Polyak, B.G. Role of radiogenic heat generation in surface heat flow formation. Geotecton. 50, 179–195 (2016). https://doi.org/10.1134/S0016852116020047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852116020047

Keywords

Navigation