Skip to main content
Log in

The role of mantle plumes in the evolution of the African segment of Pangea and the formation of the Atlantic Ocean

  • Published:
Geotectonics Aims and scope

Abstract

In this paper, we discuss a broad range of issues related to the formation of large igneous provinces in the African segment of Pangea on the basis of modern seismic tomography data. The formation of older igneous provinces (Central American and Karoo) is attributed to a prolonged phase of upwelling of hot mantle material or fluids in separate jets within a much larger area than the supposed plume head. Owing to its huge size and the thick, dense continental crust, Pangea acted as a shield promoting the accumulation and lateral channeling of heat energy beneath the lithosphere. The changes in global Earth dynamics and the generation of extensional stresses alone may have led to the breakup of Pangea, triggering the eruption of large volumes of magma over short period of time. The same factors led to the opening of the Atlantic Ocean. We provide arguments that the African superplume represents a Cenozoic structure not associated with the emplacement of the Karoo province. At the same time, the hot material brought under the lithosphere by this superplume synchronously with the start of magmatism in east Africa then spread out to the northwest to form local melting areas in Central and Northwestern Africa. We suggest that magmatic activity within the same region may have lasted, with interruptions, over tens of millions of years. Because of plate motion, these lowvelocity zones acting as heat sources appear to have lost their deep-seated roots, so that mantle reservoirs surviving at the base of the lithosphere may have fed magmatism and drifted together with the lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. L. Dobretsov, “Mantle superplumes as a cause of the main geological periodicity and global reorganizations,” Dokl. Earth Sci. 357, 1316–1319 (1997).

    Google Scholar 

  2. N. L. Dobretsov, A. A. Kirdyashkin, and A. G. Kirdyashkin, “Physicochemical conditions at the core–mantle boundary and formation of thermochemical plumes,” Dokl. Earth Sci. 393, 1319–1322 (2003).

    Google Scholar 

  3. V. G. Kaz’min, East African Rift Systems: Continental Breakup and Origination of Ocean (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  4. V. I. Kovalenko, V. V. Yarmolyuk, and O. A. Bogatikov, “Regularities of spatial distribution of mantle hot spots of the modern Earth,” Dokl. Earth Sci. 427, 924–928 (2009).

    Article  Google Scholar 

  5. A. A. Peyve, “Seamounts in the east of South Atlantic: Origin and correlation with Mesozoic–Cenozoic magmatic structures of West Africa,” Geotectonics 45, 195–209 (2011).

    Article  Google Scholar 

  6. A. A. Peyve, “Central Atlantic Igneous Province: Origin and mechanisms of formation,” Geotectonics 47, 431–438 (2013).

    Article  Google Scholar 

  7. V. N. Puchkov, “The controversy over plumes: Who is actually right?,” Geotectonics 43, 1–17 (2009).

    Article  Google Scholar 

  8. A. Adams, A. Nyblade, and D. Weeraratne, “Upper mantle shear wave velocity structure beneath the East African plateau: Evidence for a deep, plateauwide low velocity anomaly,” Geophys. J. Int. 189, 123–142 (2012).

    Article  Google Scholar 

  9. H. L. Allsop and J. C. Roddick, “Rb–Sr and 40Ar–39Ar age determination on phlogopite micas from the PreLebombo Group Dokolwayo kimberlite pipe,” Spec. Publ. Geol. Soc. S. Afr. 13, 267–271 (1984).

    Google Scholar 

  10. L. Audin, X. Quidelleur, E. Coulier, V. Courtillot, S. Gilder, I. Manighetti, P.-Y. Gillot, P. Tapponnier, and T. Kidane, “Paleomagnetism and K–Ar and 40Ar/39Ar ages in the Ali Sabieh area (Republic of Djibouti and Ethiopia): Constraints on the mechanism of Aden Ridge propagation into southeastern Afar during the last 10 Myr,” Geophys. J. Int. 158, 327–345 (2004).

    Article  Google Scholar 

  11. D. Ayalew, C. Ebinger, E. Bourdon, E. Wolfenden, G. Yirgu, and N. Grassineau, “Temporal compositional variation of early syn-rift rhyolites along the western Red sea margin and northern Main Ethiopian rift,” in The Afar volcanic province within the East African rift system, Vol. 259 of Geol. Soc. London, Spec. Publ., (London, 2006), pp. 121–130.

    Google Scholar 

  12. I. Barrie, J. Wijbrans, P. Andriessen, F. Beunk, V. Strasser-King, and D. Fode, “Combined 40Ar/39Ar and fission-track study of the Freetown layered igneous complex, Freetown, Sierra Leone, West Africa: Implications for the initial break-up of Pangea to form the Central Atlantic ocean and insight into the post-rift evolution of the Sierra Leone passive margin geophysical research,” EGU General Assembly Abstracts 12, 7322 (2010).

    Google Scholar 

  13. I. D. Bastow, A. A. Nyblade, G. W. Stuart, T. O. Rooney, and M. H. Benoit, “Upper mantle seismic structure beneath the Ethiopian hot spot: Rifting at the edge of the African low-velocity anomaly,” Geochem. Geophys. Geosyst. 9 (12), 1–25 (2008).

    Article  Google Scholar 

  14. L. Beccaluva, G. Bianchini, C. Natali, and F. Siena, “Continental flood basalts and mantle plumes: A case study of the Northern Ethiopian Plateau,” J. Petrol. 50, 1377–1403 (2009).

    Article  Google Scholar 

  15. G. C. Begg, W. L. Griffin, L. M. Natapov, S. Y. O’Reilly, S. P. Grand, C. J. O’Neill, J. M. A. Hronsky, D. Y. Poudjom, C. J. Swain, T. Deen, and P. Bowden, “The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution,” Geosphere 5, 23–50 (2009).

    Article  Google Scholar 

  16. M. K. Bensalah, N. Youbi, A. Mahmoudi, H. Bertrand, J. Mata, H. El Hachimi, J. Madeira, L. Martins, A. Marzoli, H. Bellon, F. Medina, M. Karroum, L. A. Karroum, and A. M. Ben, “The Central Atlantic Magmatic Province (CAMP) volcanic sequences of Berrechid and Doukkala basins (Western Meseta, Morocco): volcanology and geochemistry,” Comun. Geol. 98, 15–27 (2011).

    Google Scholar 

  17. W. Bosworth, P. Huchon, and K. Mcclay, “The Red Sea and Gulf of Aden basins,” J. Afr. Earth Sci. 43, 334–378 (2005).

    Article  Google Scholar 

  18. K. Burke, B. Steinberger, T. H. Torsvik, and M. A. Smethurst, “Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary,” Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Article  Google Scholar 

  19. P. Canuti, A. Gregnanin, E. M. Piccirillo, M. Sagri, and P. Tacconi, “Volcanic intercalation in the Mesozoic sediments of the Kulubi area (Harrar, Ethiopia),” Boll. Soc. Geol. Ital. 91, 603–614 (1972).

    Google Scholar 

  20. S. Chang and S. Van der Lee, “Mantle plumes and associated flow beneath Arabia and East Africa,” Earth Planet. Sci. Lett. 302, 448–454 (2011).

    Article  Google Scholar 

  21. J. Chorowicz, “The East African rift system,” J. Afr. Earth Sci. 43, 379–410 (2005).

    Article  Google Scholar 

  22. J. Chorowicz, B. Collet, F. Bonavia, P. Mohr, J.-F. Parrot, and T. Korme, “The Tana Basin, Ethiopia: IntraPlateau uplift, rifting and subsidence,” Tectonophysics 295, 351–367 (1998).

    Article  Google Scholar 

  23. N. Coltice, H. Bertrand, P. Rey, F. Jourdan, B. R. Phillips, and Y. Ricard, “Global warming of the mantle beneath continents back to the Archaean,” Gondwana Res. 15, 254–266 (2009).

    Article  Google Scholar 

  24. E. Coulie, X. Quidelleur, P. Gillot, V. Courtillot, J. Lefevre, and S. Chiesa, “Comparative K–Ar and Ar/Ar dating of Ethiopian and Yemenite Oligocene volcanism: Implications for timing and duration of the Ethiopian traps,” Earth Planet. Sci. Lett. 206, 477–492 (2003).

    Article  Google Scholar 

  25. C. Coulon, P. Vidal, C. Dupuy, P. Baudin, M. Popoff, H. Maluski, and D. Hermitte, “The Mesozoic to Early Cenozoic magmatism of the Benue Trough (Nigeria); Geochemical evidence for the involvement of the St Helena Plume,” J. Petrol. 37, 1341–1358 (1996).

    Article  Google Scholar 

  26. A. Davaille, E. Stutzmann, G. Silveira, J. Besse, and V. Courtillot, “Convective patterns under the IndoAtlantic 'box',” Earth Planet. Sci. Lett. 239, 233–252 (2005).

    Article  Google Scholar 

  27. K. Deckarta, H. Bertrand, and J. Liegeois, “Geochemistry and Sr, Nd, Pb isotopic composition of the Central Atlantic Magmatic Province (CAMP) in Guyana and Guinea,” Lithos 82, 289–314 (2005).

    Article  Google Scholar 

  28. T. Deen, W. L. Griffi, G. Begg, S. Y. O’Reilly, L. M. Natapov, and J. Hronsky, “Thermal and compositional structure of the subcontinental lithospheric mantle: Derivation from shear-wave seismic tomography,” Geochem. Geophys. Geosyst. 7, Q07003 (2006). doi: 10.1029/2005GC001120

    Article  Google Scholar 

  29. J. Dougal, N. Mountney, F. Holzforster, and H. Stollhofen, “Internal stratigraphic relationships in the Etendeka group in the Huab basin, NW Namibia: Understanding the onset of flood volcanism,” J. Geodyn. 28, 393–418 (1999).

    Article  Google Scholar 

  30. C. J. Ebinger and N. H. Sleep, “Cenozoic magmatism throughout East Africa resulting from impact of a single plume,” Nature 395, 1788–1791 (1998).

    Article  Google Scholar 

  31. C. J. Ebinger, T. Yemane, G. Woldegabriel, J. L. Aronson, and R. C. Walter, “Late Eocene–recent volcanism and faulting in the southern main Ethiopian Rift,” J. Geol. Soc. London 150, 99–108 (1993).

    Article  Google Scholar 

  32. A. Ewart, J. S. Marsh, S. C. Milner, A. R. Duncan, B. S. Kamber, and R. A. Armstrong, “Petrology and geochemistry of Early Cretaceous bimodal continental flood volcanism of the NW Etendeka, Namibia. Part 1: Introduction, mafic lavas and re-evaluation of mantle source components,” J. Petrol. 45, 59–105 (2004).

    Article  Google Scholar 

  33. A. Ewart, S. C. Milner, R. A. Armstrong, and A. R. Duncan, “Etendeka volcanism of the Goboboseb mountains and Messum igneous complex, Namibia. Part I: Geochemical evidence of Early Cretaceous Tristan plume melts and the role of crustal contamination in the Parana-Etendeka CFB,” J. Petrol. 39, 191–225 (1998).

    Article  Google Scholar 

  34. C. Faccenna, T. W. Becker, L. Jolivet, and M. Keskin, “Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback,” Earth Planet. Sci. Lett. 375, 254–269 (2013).

    Article  Google Scholar 

  35. V. Zumbo, A. Seba, and H. Bertrand, “40Ar/39Ar age and duration of tholeiitic magmatism related to the early opening of the Red Sea Rift,” Geophys. Res. Lett. 18, 195–198 (1991).

    Article  Google Scholar 

  36. A. Boven and K. Wemmer, “The Darfur Dome, western Sudan: The product of a subcontinental mantle plume,” Geol. Rundsch. 83, 614–623 (1994).

    Article  Google Scholar 

  37. T. Furman, “Geochemistry of East African Rift basalts: An overview,” J. Afr. Earth Sci. 48, 147–160 (2007).

    Article  Google Scholar 

  38. T. Furman, J. Bryce, T. Rooney, B. Hanan, G. Yirgu, and D. Ayalew, “Heads and tails: 30 million years of the Afar plume,” in: The Structure and Evolution of the East African Rift System in the Afar Volcanic Province, Vol. 256 of Geol. Soc. London, Spec. Publ., (London, 2006), pp. 97–121.

    Google Scholar 

  39. R. George, N. Rogers, and S. Kelley, “Earliest magmatism in Ethiopia: Evidence for two mantle plumes in one flood basalt province,” Geology 26, 923–926 (1998).

    Article  Google Scholar 

  40. M. Gregoire, D. R. Bell, and A. P. Le Roex, “Garnet lherzolites from the Kaapvaal craton (South Africa): Trace element evidence for a metasomatic history,” J. Petrol. 44, 629–657 (2003).

    Article  Google Scholar 

  41. W. L. Griffin, S. Y. O’Reilly, J. C. Afonso, and G. C. Begg, “The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications,” J. Petrol. 50, 1185–1204 (2009).

    Article  Google Scholar 

  42. W. W. Hastie, M. K. Watkeys, and C. Aubourg, “Magma flow in dyke swarms of the Karoo LIP: Implications for the mantle plume hypothesis,” Gondwana Res. 25, 736–755 (2014).

    Article  Google Scholar 

  43. C. Hoffman, V. Courtillot, G. Feraud, P. Rochette, G. Yirgu, E. Ketefo, and R. Pik, “Timing of the Ethiopian flood basalt event: Implications for plume birth and global change,” Nature 389, 838–841 (1997).

    Article  Google Scholar 

  44. G. W. Hughes, O. Varol, and Z. R. Beydoun, “Evidence for Middle Oligocene rifting of the Gulf of Aden and for Late Oligocene rifting of the southern Red Sea,” Mar. Petrol. Geol. 8, 354–358 (1991).

    Article  Google Scholar 

  45. P. E. Janney and P. R. Castillo, “Geochemistry of the oldest Atlantic oceanic crust suggests mantle plume involvement in the early history of the central Atlantic Ocean,” Earth Planet. Sci. Lett. 192, 291–302 (2001).

    Article  Google Scholar 

  46. F. Jourdan, H. Bertrand, G. Féraud, B. Le Gall, and M. K. Watkeys, “Lithospheric mantle evolution monitored by overlapping large igneous provinces: Case study in southern Africa,” Lithos 107, 257–268 (2009).

    Article  Google Scholar 

  47. F. Jourdan, H. Bertrand, U. Scharer, J. Blichert-Toft, G. Feraud, and A. Kampunzu, “Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo large igneous province, Botswana-Zimbabwe: Lithosphere vs mantle plume contribution,” J. Petrol. 48, 1043–1077 (2007).

    Article  Google Scholar 

  48. N. H. Kenea, C. J. Ebinger, and D. C. Rex, “Late Oligocene volcanism and extension in the southern Red Sea Hills, Sudan,” J. Geol. Soc. London 158, 285–294 (2001).

    Article  Google Scholar 

  49. R. W. Kent, M. Storey, and A. D. Saunders, “Large igneous provinces: Sites of plume impact or plume incubation?,” Geology 20, 891–894 (1992).

    Article  Google Scholar 

  50. S. King and J. Ritsema, “African hot spot volcanism: small-scale convection in the upper mantle beneath cratons,” Science 290, 1137–1140 (2000).

    Article  Google Scholar 

  51. J.-P. Liegeois, A. Benhallou, A. Azzouni-Sekkal, R. Yahiaoui, and B. Bonin, “The Hoggar swell and volcanism: Reactivation of the Precambrian Tuareg shield during Alpine convergence and West African Cenozoic volcanism,” in: Plates, Plumes, and Paradigms, Vol. 388 of Geol. Soc. Am., Spec. Pap., (2005), pp. 379–400.

    Chapter  Google Scholar 

  52. S. Lin, B. Kuo, L. Chiao, and P. E. van Keken, “Thermal plume models and melt generation in East Africa: A dynamic modeling approach,” Earth Planet. Sci. Lett. 237, 175–192 (2005).

    Article  Google Scholar 

  53. J. Loule and L. Pospisil, “Geophysical evidence of Cretaceous volcanics in Logone Birni Basin (Northern Cameroon), Central Africa, and consequences for the West and Central African rift system,” Tectonophysics 583, 88–100 (2013).

    Article  Google Scholar 

  54. J. S. Marsh, A. Ewart, S. C. Milner, A. R. Duncan, and R. McG. Miller, “The Etendeka igneous province: Magma types and their stratigraphic distribution with implications for the evolution of the Parana-Etendeka flood basalt,” Bull. Volcanol. (Heidelberg). 62, 464–486 (2001).

    Article  Google Scholar 

  55. J. S. Marsh and M. J. Watkeys, “Karoo and Etendeka flood basalt provinces, southern Africa, and the tectonic development of their adjacent continental margins,” in Proceedings of the International Lithosphere Program Workshop “Volcanic Margins,” Potsdam, Germany, 1997 (Potsdam: GeoForschungsZentrum Potsdam, 1997), pp. 30–32.

    Google Scholar 

  56. A. Marzoli, H. Bertrand, K. Knight, S. Cirilli, N. Buratti, C. Verat, S. Nomade, P. R. Renne, N. Youbi, R. Martini, K. Allenbach, R. Neuwerth, C. Rapaille, L. Zaninetti, and G. Bellieni, “Synchrony of the Central Atlantic magmatic province and the Triassic–Jurassic boundary climatic and biotic crisis,” Geology 32, 973–976 (2004).

    Article  Google Scholar 

  57. J. G. McHone, “Non-plume magmatism and rifting during the opening of the Central Atlantic ocean,” Tectonophysics 316, 287–296 (2000).

    Article  Google Scholar 

  58. S. C. Milner, A. P. Le Roex, and J. M. O’Connor, “Age of Mesozoic igneous rocks in northwestern Namibia, and their relationship to continental breakup,” J. Geol. Soc. (London, U. K.) 152, 97–104 (1995).

    Article  Google Scholar 

  59. V. Ngako, E. Njonfang, F. T. Aka, P. Affaton, and J. M. Nnange, “The North–South Paleozoic to Quaternary trend of alkaline magmatism from Niger-Nigeria to Cameroon: Complex interaction between hotspots and Precambrian faults,” J. Afr. Earth Sci. 45, 241–256 (2006).

    Article  Google Scholar 

  60. S. Ni, D. V. Helmberger, and J. Tromp, “Three-dimensional structure of the African superplume from waveform modelling,” Geophys. J. Int. 161, 283–294 (2005).

    Article  Google Scholar 

  61. S. Nomade, K. B. Knight, E. Beutel, P. R. Renne, C. Verati, G. Feraud, A. Marzoli, N. Youbi, and H. Bertrand, “Chronology of the Central Atlantic magmatic province; implications for the central Atlantic rifting processes and the Triassic–Jurassic biotic crisis: Triassic–Jurassic boundary events; problems, progress, possibilities,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 244, 326–344 (2007).

    Article  Google Scholar 

  62. A. A. Nyblade, “The upper-mantle low-velocity anomaly beneath Ethiopia, Kenya and Tanzania: Constraints on the origin of the African superswell in eastern Africa and plate versus plume models of mantle dynamics,” in Volcanism and Evolution of the African Lithosphere, Vol. 478 of Geol. Soc. Am., Spec. Pap., 37–76 (2011).

    Chapter  Google Scholar 

  63. P. R. Renne, J. M. Glen, S. C. Milner, and A. R. Duncan, “Age of Etendeka flood volcanism and associated intrusions in southwestern Africa,” Geology 24, 659–662 (1996).

    Article  Google Scholar 

  64. U. Ring, “The East African Rift System,” Austrian J. Earth Sci. 107/1, 132–146 (2014).

    Google Scholar 

  65. H. J. Ritsema, J. H. van Heijst, and J. H. Woodhouse, “Complex shear velocity structure beneath Africa and Iceland,” Science 286, 1925–1928 (1999).

    Article  Google Scholar 

  66. N. Rogers, R. Macdonald, J. G. Fitton, R. George, M. Smith, and B. Barreiro, “Two mantle plumes beneath the East African rift system: Sr, Nd and Pb isotope evidence from Kenya rift basalts,” Earth Planet. Sci. Lett. 176, 387–400 (2000).

    Article  Google Scholar 

  67. T. O. Rooney, P. Mohr, L. Dosso, and C. Hall, “Geochemical evidence of mantle reservoir evolution during progressive rifting along the western Afar margin,” Geochim. Cosmochim. Acta 102, 65–88 (2013).

    Article  Google Scholar 

  68. T. O. Rooney, B. B. Hanan, D. W. Graham, T. Furman, J. Blichert-Toft, and J. G. Schilling, “Upper mantle pollution during Afar plume–continental rift interaction,” J. Petrol. 53, 365–389 (2012).

    Article  Google Scholar 

  69. C. A. Rychert, J. O. S. Hammond, N. Harmon, J. M. Kendall, D. Keir, C. Ebinger, I. D. Bastow, A. Ayele, M. Belachew, and G. Stuart, “Volcanism in the Afar Rift sustained by decompression melting with minimal plume influence,” Nat. Geosci. 6, 406–409 (2012).

    Article  Google Scholar 

  70. A. Schettino and E. Turco, “Tectonics and geodynamics Breakup of Pangaea and plate kinematics of the central Atlantic and Atlas regions,” Geophys. J. Int. 178, 1078–1097 (2009).

    Article  Google Scholar 

  71. R. W. Schlische, “Progress in understanding the structural geology, basin evolution, and tectonic history of the eastern North American rift system,” in The Great Rift Valleys of Pangaea in Eastern North America, (Columbia Univ. Press, New York, 2003), Vol. 1, pp. 21–64.

    Google Scholar 

  72. A. Sebai, V. Zumbo, G. Ferraud, H. Bertrand, A. G. Hussain, G. Giannerini, and R. Campredon, “40Ar/39Ar dating of alkaline and tholeiitic magmatism of Saudi Arabia related to the early Red sea rifting,” Earth Planet. Sci. Lett. 104, 473–487 (1991).

    Article  Google Scholar 

  73. A. Segev, “Flood basalts, continental breakup and the dispersal of Gondwana: evidence for periodic migration of upwelling mantle flows (plumes),” EGU Stephan Mueller Spec. Publ. Ser. 2, 171–191 (2002).

    Article  Google Scholar 

  74. N. A. Simmons, A. M. Forte, and S. P. Grand, “Thermochemical Thermochemical structure and dynamics of the African superplume,” Geophys. Res. Lett. 34, L02301 (2007).

    Google Scholar 

  75. H. Svensen, F. Corfu, S. Polteau, Ø. Hammer, and S. Planke, “Rapid magma emplacement in the Karoo large igneous province,” Earth Planet. Sci. Lett. 325–326, 1–9 (2012).

    Article  Google Scholar 

  76. R. N. Thompson, A. J. V. Riches, P. M. Antoshechkina, D. G. Pearson, G. M. Nowell, C. J. Ottley, A. P. Dickin, V. L. Hards, A. K. Nguno, and V. Niku-Paavola, “Origin of CFB magmatism: Multi-tiered intracrustal picrite-rhyolite magmatic plumbing at Spitzkoppe, Western Namibia, during Early Cretaceous Etendeka magmatism,” J. Petrol. 48, 1119–1154 (2007).

    Article  Google Scholar 

  77. V. P. Trubitsyn and A. P. Trubitsyn, “Evolution of mantle plumes and uplift of continents during the Pangea breakup,” Russ. J. Earth Sci. 7, ES3001 (2005). doi 10.2205/2005ES000179

    Article  Google Scholar 

  78. R. B. Trumbull, D. L. Reid, C. De Beer, D. Van Acken, and R. L. Romer, “Trumbull magmatism and continental breakup at the west margin of southern Africa: a geochemical comparison of dolerite dikes from northwestern Namibia and the Western Cape,” S. Afr. J. Geol. 110, 477–502 (2007).

    Article  Google Scholar 

  79. I. A. Ukstins, P. R. Renne, E. Wolfenden, J. Baker, D. Ayalew, and M. Menzies, “Matching conjugate volcanic rifted margins: 40Ar/39Ar chrono-stratigraphy of preand syn-rift bimodal flood volcanism in Ethiopia and Yemen,” Earth Planet. Sci. Lett. 198, 289–306 (2002).

    Article  Google Scholar 

  80. J. Varet, Geology of Central and Southern Afar (Ethiopia and Djibouti Republic), C. N. R. S., Paris, 1978.

    Google Scholar 

  81. K. Whitehead, A. P. Le Roex, C. Class, and D. R. Bell, “Composition and Cretaceous thermal structure of the upper mantle beneath the Damara mobile belt: Evidence from nephelinite-hosted peridotite xenoliths, Swakopmund, Namibia,” J. Geol. Soc. London 159, 307–321 (2002).

    Article  Google Scholar 

  82. E. Wolfendena, C. Ebingera, G. Yirgub, A. Deinoc, and D. Ayalew, “Evolution of the northern Main Ethiopian rift: Birth of a triple junction,” Earth Planet. Sci. Lett. 224, 213–228 (2004).

    Article  Google Scholar 

  83. J. B. Wright, “Origin of the younger granites of northern Nigeria,” Contrib. Mineral. Petrol. 29, 89–90 (1970).

    Article  Google Scholar 

  84. B. Zanettin, E. Justin-Visentin, G. Bellieni, E. M. Piccirillo, and F. Rita, “Le volcanisme du bassin du Nord Turkana (Kenya): Age succession et évolution structural,” Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine 7, 249–255 (1983).

    Google Scholar 

  85. N. Zhang, S. Zhong, W. Leng, and Z.-X. Li, “A model for the evolution of the Earth’s mantle structure since the Early Paleozoic,” J. Geophys. Res. 115 (B06), 1–22 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Peyve.

Additional information

Original Russian Text © A.A. Peyve, 2015, published in Geotektonika, 2015, No. 5, pp. 24–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peyve, A.A. The role of mantle plumes in the evolution of the African segment of Pangea and the formation of the Atlantic Ocean. Geotecton. 49, 379–394 (2015). https://doi.org/10.1134/S0016852115050052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852115050052

Keywords

Navigation