Skip to main content
Log in

Mantle thermochemical plumes and their influence on the formation of highlands

  • Published:
Geotectonics Aims and scope

Abstract

The structure of a thermochemical plume conduit rising from the core-mantle boundary and reaching the maximal height when its rising (melting of a plume conduit) terminates is considered in this paper. The relative thermal power of plumes not reaching the surface is Ka < 1.15, and they are called plumes of low thermal power. The dependences of the rate of rising of a ball-like roof of the plume and the rate of rising of day surface above the plume on time are presented. Due to the influence of superlithostatic pressure on the plume roof, the day surface rises above the plume. The elevation of the day surface formed above the plume was calculated for various times in dependence on the horizontal coordinate. With decreasing viscosity of the lithosphere above the plume roof and depth of the plume roof, the rate of rising of the day surface increases, and the time necessary for reaching of the maximal surface elevation decreases. The maximal elevation of the highland above the plume was estimated. The surface elevations formed under the influence of two or three plumes that did not reach the surface were estimated for various times. Based on the suggested model of the formation of elevations above the plume, it is concluded that large highlands (mountain ridges and plateaus) can be formed under the influence of plume clusters that do not reach the day surface. The estimates of the rate of rising of the day surface above the plume obtained in this study are in a good agreement with the geological data on the rates of rising of Tibet and the Caucasus. The rising of a temperature front above the plume roof reaching the maximal rising height is considered. The dependences of the height and rate of rising of a temperature front above the plume roof on time were obtained. The local increase of a specific heat flux in the highland formed above the plume may show that the maximal height of rising of a surface above the plume was gained. Based on the analysis of the heat transfer, the association between the activity of plume clusters that do not reach the surface and the formation of hot fields is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Belousov, Foundations of Geotectonics, (Nedra, Moscow, 1989) [in Russian].

    Google Scholar 

  2. E. Burov, L. Guillou-Frottier, and E. Acremont, “Le Pourhiet L., Cloetingh S. Plume roof-lithosphere interactions near intra-continental plate boundaries”, Tectonophysics 434, 15–38 (2007).

    Article  Google Scholar 

  3. I. H. Campbell and R. W. Griffiths, “Implications of mantle plume structure for the evolution of flood basalts”, Earth Planet. Sci. Lett. 99, 79–93 (1990).

    Article  Google Scholar 

  4. D. L. Coulliette and D. E. Loper, “Experimental, numerical and analytical models of mantle starting plumes”, Phys. Earth Planet. Inter. 92, 143–167 (1995).

    Article  Google Scholar 

  5. J. B. Dawson, Kimberlites and Their Xenoliths, (Springer-Verlag, Berlin-Heidelberg, 1980).

    Book  Google Scholar 

  6. N. L. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, Deep Geodynamics, (Izd. SO RAN, Fil. GEO, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  7. N. L. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, “Parameters of hot spots and thermochemical plumes”, Geol. Geofiz. 46 (6), 589–602 (2005).

    Google Scholar 

  8. N. L. Dobretsov, A. A. Kirdyashkin, A. G. Kirdyashkin, V. A. Vernikovsky, I. N. Gladkov, “Modelling of thermochemical plumes and implications for the origin of the Siberian traps”, Lithos 100, 66–92 (2008).

    Article  Google Scholar 

  9. I. N. Gladkov, V. E. Distanov, A. A. Kirdyashkin, and A. G. Kirdyashkin, “Stability of a melt/solid interface with reference to a plume channel”, Fluid Dyn. 47, 433–447 (2012).

    Article  Google Scholar 

  10. R. W. Griffiths and I. H. Campbell, “Stirring and structure in mantle starting plumes”, Earth Planet. Sci. Lett. 99, 66–78 (1990).

    Article  Google Scholar 

  11. L. Guillou and C. Jaupart, “On the effects of continents on mantle convection”, J. Geophys. Res. 100, 24217–24238 (1995).

    Article  Google Scholar 

  12. L. Guillou-Frottier, E. Burov, P. Nehlig, and R. Wyns, “Deciphering plume-lithosphere interactions beneath Europe from topographic signatures”, Global Planet. Change 58, 119–140 (2007).

    Article  Google Scholar 

  13. I. Jimenez-Munt, M. Fernandez, J. Verges, and J. P. Platt, “Lithosphere structure underneath the Tibetan Plateau inferred from elevation, gravity and geoid anomalies”, Earth Planet. Sci. Lett. 267, 276–289 (2008).

    Article  Google Scholar 

  14. N. Harris, “The elevation history of the Tibetan Plateau and its implications for the Asian monsoon”, Palaeogeogr., Palaeoclimat., Palaeoecol. 241, 4–15 (2006).

    Article  Google Scholar 

  15. T. Katsura, A. Yoneda, D. Yamazaki, T. Yoshino, E. Ito, “Adiabatic temperature profile in the mantle”, Phys. Earth Planet. Inter. 183, 212–218 (2010).

    Article  Google Scholar 

  16. A. A. Kirdyashkin, N. L. Dobretsov, and A. G. Kirdyashkin, “Thermochemical plumes”, Geol. Geofiz. 45 (9), 1057–1073 (2004).

    Google Scholar 

  17. A. A. Kirdyashkin, N. L. Dobretsov, A. G. Kirdyashkin, I. N. Gladkov, and N. V. Surkov, “Hydrodynamic processes during rise of the mantle plume and conditions of the formation of eruption channel”, Geol. Geofiz. 46 (9), 891–907 (2005).

    Google Scholar 

  18. A. A. Kirdyashkin and A. G. Kirdyashkin, “Interaction of a thermochemical plume with free convection mantle flows and its influence on mantle melting and recrystallization”, Geol. Geofiz. 54 (5), 707–721 (2013).

    Google Scholar 

  19. A. G. Kirdyashkin, A. A. Kirdyashkin, I. N. Gladkov, and V. E. Distanov, “Experimental modeling of the effect of relative thermal power on the shape of a plume conduit and the structure of free-convection flow in it”, Geol. Geofiz. 53 (7), 900–911 (2012).

    Google Scholar 

  20. V. D. Kotelkin and L. I. Lobkovskii, “The Myasnikov global theory of the evolution of planets and the modern thermochemical model of the Earth’s evolution”, Izv., Phys. Solid Earth 43, 24–41 (2007).

    Article  Google Scholar 

  21. V. D. Kotelkin and L. I. Lobkovskii, “Thermochemical theory of geodynamic evolution”, Dokl. Earth Sci. 438 (1), 622–626 (2011).

    Article  Google Scholar 

  22. V. D. Kotelkin and L. I. Lobkovskii, “Hydrodynamic theory of geodynamic evolution”, Vestn. Nizhegorod. Univ., No. 4 (5), 2269–2271 (2011).

    Google Scholar 

  23. S.-C. Lin and P. E. van Keken, “Multiple volcanic episodes of flood basalts caused by thermochemical plumes”, Nature 436, 250–252 (2005).

    Article  Google Scholar 

  24. S.-C. Lin and P. E. van Keken, “Dynamics of thermochemical plumes: 1. Plume formation and entrainment of a dense layer”, Geochem. Geophys. Geosyst. 7, 02006 (2006).

    Article  Google Scholar 

  25. S.-C. Lin and P. E. van Keken, “Dynamics of thermochemical plumes: 2. Complexity of plumes structures and implications for the mapping of mantle plumes”, Geochem. Geophys. Geosyst. 7, 03003 (2006).

    Article  Google Scholar 

  26. S.-C. Lin and P. E. van Keken, “Deformation, stirring, and material transport in thermochemical plumes”, Geophys. Rev. Lett. 33, 20306 (2006).

    Article  Google Scholar 

  27. V. C. Manea, M. Manea, W. P. Leeman, and D. L. Schutt, “The influence of plume roof-lithosphere interaction on magmatism associated with the Yellowstone hotspot track”, J. Volcanol. Geotherm. Res. 188, 68–85 (2009).

    Article  Google Scholar 

  28. A. K. McNamara and S. Zhong, “The influence of thermochemical convection on the fixity of mantle plumes”, Earth Planet. Sci. Lett. 222, 485–500 (2004).

    Article  Google Scholar 

  29. P. Olson and H. Singer, “Creeping plumes”, J. Fluid Mech. 158, 511–531 (1985).

    Article  Google Scholar 

  30. H. Samuel and D. Bercovici, “Oscillating and stagnating plumes in the Earth’s lower mantle”, Earth Planet. Sci. Lett. 248, 90–105 (2006).

    Article  Google Scholar 

  31. B. Schott and D. A. Yuen, “Influences of dissipation and rheology on mantle plumes coming from the Dlayer”, Phys. Earth Planet. Inter. 146, 139–145 (2004).

    Article  Google Scholar 

  32. G. Schubert, D. L. Turcotte, and P. Olson, Mantle Convection in the Earth and Planets, (University Press, Cambridge, 2001).

    Book  Google Scholar 

  33. G. Shlikhting, Theory of the Boundary Layer, (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  34. V. P. Trubitsyn, “Generation of mantle plumes in the peripherals of giant hot provinces on the mantle bottom beneath supercontinents”, Dokl. Earth Sci. 445 (2), 1025–1028 (2012).

    Article  Google Scholar 

  35. V. P. Trubitsyn, A. N. Evseev, M. N. Evseev, and E. V. Kharybin, “Mantle plumes in the models of quasi-turbulent thermal convection”, Izv., Phys. Solid Earth 47, 1027–1033 (2011).

    Article  Google Scholar 

  36. V. P. Trubitsyn, A. N. Evseev, M. N. Evseev, and E. V. Kharybin, “Evidence of plumes in the structure of mantle convection, thermal fields, and mass transport”, Dokl. Earth Sci. 447 (2), 1281–1283 (2012).

    Article  Google Scholar 

  37. V. P. Trubitsyn and E. V. Kharybin, “Thermochemical mantle plumes”, Dokl. Earth Sci., 435 (2), 1656–1658 (2010).

    Article  Google Scholar 

  38. D. Turcotte and J. Schubert, Geodynamics,, (Wiley, New York, 1982).

    Google Scholar 

  39. U. Walzer, R. Hendel, and J. Baumgardner, “The effects of a variation of the radial viscosity profile on mantle evolution”, Tectonophysics 384, 55–90 (2004).

    Article  Google Scholar 

  40. J. A. Whitehead and D. S. Luther, “Dynamics of laboratory diapir and plume models”, J. Geophys. Res. 80 (5), 705–717 (1975).

    Article  Google Scholar 

  41. T. Yang and W. Leng, “Dynamics of hidden hotspot tracks beneath the continental lithosphere”, Earth Planet. Sci. Lett. 401, 294–300 (2014).

    Article  Google Scholar 

  42. S. Zhong, “Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature and upper mantle temperature”, J. Geophys. Res. 111, 04409 (2006).

    Article  Google Scholar 

  43. L. P. Zonenshain and M. I. Kuz’min, “Intraplate magmatism and its significance for understanding of the processes in the Earth’s mantle”, Geotektonika, No. 1, 28–45 (1983).

    Google Scholar 

  44. L. P. Zonenshain and M. I. Kuz’min, Palegeodynamics, (Nedra, Moscow, 1993) [in Russian].

    Google Scholar 

  45. L. P. Zonenshain and M. I. Kuz’min, “Deep geodynamics of the Earth”, Geol. Geofiz. 34 (4), 3–13 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kirdyashkin.

Additional information

Original Russian Text © A.G. Kirdyashkin, A.A. Kirdyashkin, 2015, published in Geotektonika, 2015, No. 4, pp. 86–96.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirdyashkin, A.G., Kirdyashkin, A.A. Mantle thermochemical plumes and their influence on the formation of highlands. Geotecton. 49, 332–341 (2015). https://doi.org/10.1134/S0016852115040032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852115040032

Keywords

Navigation