Skip to main content
Log in

Development of passive volcanic margins of the Central Atlantic and initial opening of ocean

  • Published:
Geotectonics Aims and scope

Abstract

Geological and geophysical data on the Central Atlantic are discussed in order to elucidate the tectonic setting of the initial magmatic activity, rifting, and breakup resulting in the origination of Mesozoic ocean. The structural, magmatic, and historical aspects of the problem are considered. It has been established that the initial dispersed rifting and low-capacity magmatism at proximal margins was followed by the migration of the process toward the central part of region with the formation of distal zones and the development of vigorous magmmatism, further breakup of the lithosphere and ocean opening. Magmatism, its sources, and the features of newly formed magmatic crust at both the rifting and breakup stages of margin development are discussed and compared with subsequent spreading magmatism. Sr, Nd, and Pb isotopic compositions show that the magmatic evolution of the Central Atlantic proximal margins bears the features of two enriched components, one of which is related to the EM-1 source, developing only at the North American margin. Another enriched component typical of the province as a whole is related to the EM-2 source. To a lesser extent, this component is expressed in igneous rocks of Guyana, which also bear the signature of the MORB-type depleted source typical of spreading tholeiites in the Atlantic Ocean. Similar conditions are assumed for subsequent magmatism at the distal margins and for the early spreading basalts in the adjacent Atlantic belt, which also contain a small admixture of enriched material. A comparison of the magmatism at the margins of Central and North Atlantic reveals their specificity distinctly expressed in isotopic compositions of igneous rocks. In contrast to the typical region of the North Atlantic, the immediate melting of the enriched lithospheric source without the participation of plume-related melts is reconstructed for the proximal margins of the Central Atlantic. At the same time, decompression and melting in the lithosphere could have been determined by the thermal effect of the Central Atlantic hot plume. This is testified by the intense melting in a short time interval over a vast area; the generation of rather homogeneous melts and creation of the thick magmatic crust; the radial arrangement of the dikes intruded in the course of plume ascent; as well as by the data of seismic tomography indicating the occurrence of the hot upper mantle material, which has kept the “memory” of the action of a shallow-seated Mesozoic plume. The formation of the Central Atlantic plume can be presumably regarded as a result of upwelling remobilisation adove the ancient African superplume and the rearrangement of the deep structure in Triassic and Jurassic times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. N. Melankholina, “Tectonotype of volcanic passive margins in the Norwegian-Greenland region,” Geotectonics 42(3), 225–244 (2008).

    Article  Google Scholar 

  2. E. N. Melankholina and N. M. Sushchevskaya, “Development peculiarities of the magmatism synchronous to the formation of the North Atlantic passive margins,” Geotectonics 47(2), 75–92 (2013).

    Article  Google Scholar 

  3. A. A. Peyve, “Central Atlantic igneous province: Origin and mechanisms of formation,” Geotectonics 47(6), 431–438 (2013).

    Article  Google Scholar 

  4. V. N. Puchkov, “The controversy over plumes: Who is actually right?” Geotectonics 43(1), 1–17 (2009).

    Article  Google Scholar 

  5. N. M. Sushchevskaya, T. I. Tsekhonya, A. A. Ariskin, V. V. Nikulin, and K. I. Lokhov, “Petrochemical features of tholeiitic magmas at 26° N of Mid-Atlantic Ridge (Transatlantic Geotraverse) and conditions of their fractionation,” Geokhimiya 30(4), 504–515 (1992).

    Google Scholar 

  6. N. M. Sushchevskaya, G. A. Cherkashov, B. V. Baranov, K. Tomaki, H. Sato, H. Nguyen, B. V. Belyatsky, and T. I. Tsekhonya, “Tholeiitic magmatism of the ultraslow spreading environment: An example from the Knipovich Ridge, North Atlantic,” Geochem. Int. 43(3), 222–241 (2005).

    Google Scholar 

  7. D. L. Anderson, “The sublithospheric mantle as the source of continental flood basalts: the case against the continental lithosphere and plume head reservoirs,” Earth Planet. Sci. Lett. 123, 269–280 (1994).

    Article  Google Scholar 

  8. J. A. Austin, Jr., P. L. Stoffa, J. D. Phillips, J. Oh, D. S. Sawyer, G. M. Purdy, E. Reiter, and J. Makris, “Crustal structure of the Southeast Georgia embayment-Carolina Trough: Preliminary results of a composite seismic image of a continental suture(?) and a volcanic passive margin,” Geology 18, 1023–1027 (1990).

    Article  Google Scholar 

  9. M. K. Bensalah, N. Youbi, A. Mahmoudi, H. Bertrand, J. Mata, H. El Hachimi, J. Madeira, A. Martins, A. Marzoli, H. Bellon, F Medina, M. Karroum, L. A. Karroum, and M. Ben Abbou, “The Central Atlantic Magmatic Province (CAMP) volcanic sequences of Berrechid and Doukkala basins (Western Meseta, Morocco): volcanology and geochemistry,” Comun. Geol. 98, 15–27 (2011).

    Google Scholar 

  10. T. J. Blackburn, P. Olsen, S. A. Bowring, N. Mclean, D. Kent, J. H. Puffer, G. McHone, and T. Rasbury, High-Precision U-Pb Zircon Geochronological Constraints on the End-Triassic Mass Extinction, the Late Triassic Astronomical Time Scale and Geochemical Evolution of CAMP Magmatism (EOS Trans., AGU, Supplement Fall Meeting, San Francisco, 2012). doi: 10.1126/science.123420

    Google Scholar 

  11. S. Callegaro, A. Marzoli, H. Bertrand, M. Chiaradia, L. Reisberg, C. Meyzen, G. Bellieni, R. E. Weems, and R. Merle, “Upper and lower crust recycling in the source of CAMP basaltic dykes from southeastern North America,” Earth Planet. Sci. Lett. 376(8), 186–199 (2013).

    Article  Google Scholar 

  12. J. M. Cebriá, J. López-Ruiz, M. Doblas, L. T. Martins, and J. Munha, “Geochemistry of the Early Jurassic Messejana-Plasencia dyke (Portugal-Spain): implications on the origin of the Central Atlantic Magmatic Province,” J. Petrol. 44(3), 547–568 (2003). doi 10.1093/petrology/44.3.547

    Article  Google Scholar 

  13. M. C. Chabou, H. Bertrand, and A. Sebaï, “Geochemistry of the Central Atlantic Magmatic Province (CAMP) in south-western Algeria,” J. Afr. Earth Sci. 58, 211–219 (2010). doi 10.1016/j.jafrearsci.2010.02.009

    Article  Google Scholar 

  14. S. Cirilli, A. Marzoli, L. Tanner, H. Bertrand, N. Buratti, F. Jourdan, G. Bellieni, D. Kontak, and P. R. Renne, “Latest Triassic onset of the Central Atlantic Magmatic Province (CAMP) volcanism in the Fundy Basin (Nova Scotia): New stratigraphic constraints,” Earth Planet. Sci. Lett. 286, 514–525 (2009). doi 10.1016/j.epsl.2009.07.021

    Article  Google Scholar 

  15. N. Coltice, H. Bertrand, P. Rey, F. Jourdan, B. R. Phillips, and Y. Ricard, “Global warming of the mantle beneath continents back to the Archaean,” Gondwana Res. 15, 254–266 (2009). doi: 10.1016/j.gr.2008.10.001

    Article  Google Scholar 

  16. I. Contrucci, F. Klingelhöfer, J. Perrot, R. Bartolome, M.-A. Gutsche, M. Sahabi, J. Malod, and J.-P. Rehault, “The crustal structure of the NW Moroccan continental margin from wide-angle and reflection seismic data,” Geophys. J. Int. 159(1), 117–128 (2004). doi: 10.1111/J.1365-246X.2004.02391.x

    Article  Google Scholar 

  17. V. Courtillot, C. Jaupart, I. Manighetti, P. Tapponier, and J. Besse, “On causal links between flood basalts and continental break-up,” Earth Planet. Sci. Lett. 166(3/4), 177–195 (1999).

    Article  Google Scholar 

  18. T. Cuppone, “CAMP volcanism: Age, volcanic stratigraphy and origin of the magmas. Cases studies from Morocco and the U.S.A”, Universita degli studi di Hadova. Tesi di dottorato (Anteprima, 2009).

    Google Scholar 

  19. K. Deckart, H. Bertrand, and J. P. Liegeois, “Geochemistry and Sr, Nd, Pb isotopic composition of the Central Atlantic Magmatic Province (CAMP) in Guyana and Guinea,” Lithos 82(1), 289–314 (2005).

    Article  Google Scholar 

  20. A. De Min, E. M. Piccirillo, A. Marzoli, G. Bellieni, P. R. Renne, M. Ernesto, and L. S. Marques, “The Central Atlantic Magmatic Province (CAMP) in Brazil: petrology, geochemistry, 40Ar/39Ar ages, paleomagnetism and geodynamic implications,” in The Central Atlantic Magmatic Province: Insights from Fragments of Pangea, Ed. by W. E. Hames, J. G. McHone, P. R. Renne, and C. R. Ruppel (Geophys. Monogr. AGU, Washington, DC, 2003).

    Google Scholar 

  21. M. J. Dorais, H. Matthew, S. Larson, H. Nugroho, P. Richardson, and N. Roosmawati, “A comparison of eastern North America and coastal New England magma suites: implications for subcontinental mantle evolution and the broad-terrane hypothesis,” Can. J. Earth Sci. 42(9), 1571–1587 (2005).

    Article  Google Scholar 

  22. O. Eldholm, T. P. Gladczenko, J. Skogseid, and S. Planke, “Atlantic volcanic margins: A comparative study,” Geol. Soc. London Spec. Publ. 167, 411–428 (2000). doi 10.1144/GSL.SP.2000.167.01.16

    Article  Google Scholar 

  23. Y. Fukao, S. Maruyama, M. Obayashi, and H. Inoue, “Geologic implication of the whole mantle P-wave tomography,” J. Geol. Soc. J. 100(1), 4–23 (1994).

    Article  Google Scholar 

  24. A. Ghatak and A. R. Basu, “Central Atlantic Magmatic Province (CAMP): The Palisade sill connection,” in Mantle Plumes: What Do We Really Know? (Amer. Geophys. Union. Fall Meeting, 2014), D153A, pp. 213–259.

    Google Scholar 

  25. M. Gouiza, Mesozoic Source-to-Sink Systems in NW Africa: Geology of Vertical Movements during the Birth and Growth of the Moroccan Rifted Margin (Wörmann, Vrije Universiteit, 2011).

    Google Scholar 

  26. J. D. Greenough, L. M. Jones, and D. J. Mossman, “The Sr isotopic composition of Early Jurassic mafic rocks of Atlantic Canada: implications for assimilation and injection mechanisms affecting mafic dykes,” Chem. Geol. Isotope Geosci. Sect. 80(1), 17–26 (1989).

    Article  Google Scholar 

  27. K. Hanghøj, M. Storey, and O. Stechtr, “An isotope and trace element study of the East Greenland Tertiary dyke swarm: Constraints on temporal and spatial evolution during continental rifting,” J. Petrol. 44(11), 2081–2112 (2003).

    Article  Google Scholar 

  28. W. S. Holbrook and P. B. Kelemen, “Large igneous province on the U.S. Atlantic margin and implications for magmatism during continental breakup,” Nature 364, 433–436 (1993).

    Article  Google Scholar 

  29. W. S. Holbrook, G. M. Purdy, R. E. Sheridan, L. Glover, III, M. Talwani, J. Ewing, and D. Hutchinson, “Seismic structure of the U.S. mid-Atlantic continental margin,” J. Geophys. Res. 99(B9), 17871–17891 (1994).

    Article  Google Scholar 

  30. W. S. Holbrook, E. C. Reiter, G. M. Purdy, D. Sawyer, P. L. Stoffa, J. A. Austin, Jr., J. Oh, and J. Makris, “Deep structure of the U.S. Atlantic continental margin, offshore South Carolina, from coincident ocean-bottom and multi-channel seismic data,” J. Geophys. Res. 99(B5), 9155–9178 (1994).

    Article  Google Scholar 

  31. J. S. Holik, P. D. Rabinowitz, and J. A. Austin, “Effects of the Canary hotspot volcanism on the structure of oceanic crust off Morocco,” J. Geophys. Res. 96(NB7), 12039–12067 (1991).

    Article  Google Scholar 

  32. M. Jaffal, F. Klingelhoefer, L. Matias, F. Teiseira, and M. Amrhar, “Crustal structure of the NW Moroccan margin from deep seismic data (SISMAR cruise),” C. R. Geosci. 341, 495–5003 (2009). doi 10.1016/j.cte.2009.04.003

    Article  Google Scholar 

  33. P. E. Janney and P. R. Castillo, “Geochemistry of the oldest Atlantic oceanic crust suggests mantle plume involvement in the early history of the central Atlantic Ocean,” Earth Planet. Sci. Lett. 192, 291–302 (2001).

    Article  Google Scholar 

  34. L. F. Jansa and G. Pe-Piper, “Middle Jurassic to Early Cretaceous igneous rocks along eastern North American continental margin,” AAPG Bull. 72(3), 347–366 (1988).

    Google Scholar 

  35. F. Jourdan, A. Marzoli, H. Bertrand, S. Cirilli, L. H. Tanner, D. J. Kontak, G. McHone, P. R. Renne, and G. Bellieni, “40Ar/39Ar ages of CAMP in North America: Implications for the Triassic-Jurassic boundary and the 40K decay constant bias,” Lithos 110(1/4), 167–180 (2009).

    Article  Google Scholar 

  36. C. E. Keen, B. C. MacLean, and W. A. Kay, “A deep seismic reflection profile across the Nova Scotia continental margin, offshore Eastern Canada,” Can. J. Earth Sci. 28, 1112–1120 (1991).

    Article  Google Scholar 

  37. C. E. Keen and D. P. Potter, “Formation and evolution of the Nova Scotian rifted margin: evidence from the deep seismic reflection data,” Tectonics 14(2), 918–932 (1995).

    Article  Google Scholar 

  38. F. Klingelhoefer, C. Labails, E. Cosquer, S. Rouzo, L. Geli, D. Aslanian, J.-L. Olivet, M. Sahabi, H. Nouze, and P. Unternehr, “Crustal structure of the SW Moroccan margin from wide-angle and reflection seismic data (the DAKHLA Experiment). Part A: wide-angle seismic Models,” Tectonophysics 468(1/4), 63–82 (2009). doi: 10.1016/j.tecto.2008.07.022

    Article  Google Scholar 

  39. K. B. Knight, S. Nomade, P. R. Renne, A. Marzoli, H. Bertrand, and N. Youbi, “The Central Atlantic Magmatic Province at the Triassic-Jurassic boundary: Paleomagnetic and 40Ar/39Ar evidence from Morocco for brief, episodic volcanism,” Earth Planet. Sci. Lett. 228(1/2), 143–160 (2004). doi 10.1016/j.epsl.2004.09.022

    Article  Google Scholar 

  40. C. Labails, M. Bronner, and L. Gernigon, “Deep crustal structures of the Central Atlantic Ocean conjugate margins: Combined approach of seismic, gravity and magnetic investigations,” Geol. Surv. Norway: NGU, Leiv. Eirikssons vei 39(7491), 138–141.

  41. C. Labails, J.-L. Olivet, D. Aslanian, and W. R. Roest, “Alternative early opening scenario for the Central Atlantic Ocean,” Earth Planet. Sci. Lett. 297(3/4), 355–368 (2010). doi 10.1016/J.tecto.2008.08.028

    Article  Google Scholar 

  42. A. Marzoli, F. Jourdan, J. H. Puffer, T. Cuppone, L.H. Tanner, R. E. Weems, H. Bertrand, S. Cirilli, G. Bellieni, and A. De Min, “Timing and duration of the Central Atlantic Magmatic Province in the Newark and Culpeper Basins, Eastern U.S.A.,” Lithos 122(3/4), 175–188 (2011). doi 10.1016/j.lithos.2010.12.013

    Article  Google Scholar 

  43. W. F. McDonough and S.-S. Sun, “The composition of the Earth,” Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  44. J. G. McHone, “Broad-terrane Jurassic flood basalts across northeastern North America,” Geology 24, 319–322 (1996).

    Article  Google Scholar 

  45. J. G. McHone, “Non-plume magmatism and tectonics during the opening of the Central Atlantic Ocean,” Tectonophysics 316(3–4), 287–296 (2000).

    Article  Google Scholar 

  46. J. G. McHone and J. H. Puffer, “Flood basalt provinces of the Pangaean Atlantic Rift: regional extent and environmental significance,” in Advances in Triassic-Jurassic Rift Geoscience, Ed. by P. M. LeTourneau and P. E. Olsen (Columbia Univ. Press, New York, 2001), pp. 141–154.

    Google Scholar 

  47. J. McHone, M. E. Ross, and J. D. Greenough, “Mesozoic dyke swarms of eastern North America,” Geol. Assoc. Canada. Spec. Pap. 34, 279–288 (1987).

    Google Scholar 

  48. S. Nomade, K. B. Knight, E. Beutel, P. R. Renne, C. Verati, G. Feraud, A. Marzoli, N. Youbi, and H. Bertrand, “Chronology of the Central Atlantic Magmatic Province: Implications for the Central Atlantic rifting processes and the Triassic-Jurassic biotic crisis,” Palaeogeogr. Palaeoclim. Palaeoecol. 244(1/4), 326–344 (2007). doi: 10.1016/j.palaeo.2006.06.034

    Article  Google Scholar 

  49. J. Oh, J. A. Austin, Jr., J. D. Phillips, M. F. Coffin, and P. L. Stoffa, “Seaward-dipping reflectors offshore the southeastern United States: Seismic evidence for extensive volcanism accompanying sequential formation of the Carolina Trough and Blake Plateau Basin,” Geology 23, 9–12 (1995).

    Article  Google Scholar 

  50. R. Oyarzun, M. Doblas, J. Lopez-Ruiz, and J. M. Cebria, “Opening of the Central Atlantic and asymmetric mantle upwelling phenomena: Implications for long-lived magmatism in eastern North Africa and Europe,” Geology 25, 727–730 (1997).

    Article  Google Scholar 

  51. W. J. Pegram, “Development of continental lithospheric mantle as reflected in the chemistry of the Mesozoic Appalachian tholeiites, U.S.A.,” Earth Planet. Sci. Lett. 97, 316–331 (1990). doi 10.1016/0012-821X(90)900-49-4

    Article  Google Scholar 

  52. G. Pe-Piper and L. F. Jansa, “Geochemistry of late Middle Jurassic-Early Cretaceous igneous rocks on the eastern North American Margin,” Geol. Soc. Am. Bull. 99(6), 803–813 (1987).

    Article  Google Scholar 

  53. G. Pe-Piper and P. H. Reynolds, “Early Mesozoic alkaline mafic dykes, southwestern Nova Scotia, Canada, and their bearing on Triassic-Jurassic magmatism,” Can. Mineral. 38(1), 217–232 (2000).

    Article  Google Scholar 

  54. J. H. Puffer, “A reactivated back-arc source for CAMP magmas,” in The Central Atlantic Magmatic Province, Ed. by W. E. Hames, J. G. McHone, P. R. Renne, and C. Ruppel (Amer. Geophys. Union. Geophys. Monogr., 2002), Vol. 136, pp. 151–161.

    Article  Google Scholar 

  55. C. R. Ranero and J. Phipps Morgan, “Along-strike supply of volcanic rifted margins: a mechanism for sudden along-strike transitions between volcanic and nonvolcanic rifted margins,” Eur. Geosci. Union. Geophys. Res. Abstr. 9(08929) (2007).

    Google Scholar 

  56. B. Romanowicz and Y. C. Gung, “Superplumes from the core-Mantle boundary to the base of the lithosphere,” Science 296, 513–516 (2002).

    Article  Google Scholar 

  57. M. Sahabi, D. Aslanian, and J. L. Olivet, “A new starting point for the history of the Central Atlantic,” C. R. Geosci. 336, 1041–1052 (2004). doi 10.1016/j.crte.2004.03.017

    Article  Google Scholar 

  58. R. W. Schlische, M. O. Withjack, and P. E. Olsen, “Relative timing of CAMP, rifting, continental breakup, and basin inversion: tectonic significance,” in The Central Atlantic Magmatic Province: Insights from Fragments of Pangea, Ed. by W. J. Hames, et al. (Amer. Geophys. Monogr., 2003), Vol. 136, pp. 33–59.

    Article  Google Scholar 

  59. A. N. Sial, R. V. Fodor, and V. P. Ferreira, “Mesozoic mafic dykes of northeastern South America and correlations with similar dyke swarms in West Africa and eastern North America,” Boletim. IG-USP, Sér. Científica 20, 61–63 (1989).

    Article  Google Scholar 

  60. S.-S. Sun and W. F. McDonough, “Implications for mantle composition and processes: chemical and isotopic systematics of oceanic basalts,” Geol. Soc. Spec. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  61. M. Talwani, J. Ewing, R. E. Sheridan, W. S. Holbrook, and L. Glover III, “The edge experiment and the U.S. East Coast Magnetic Anomaly,” in Rifted Ocean-Continent Boundaries, Ed. by E. Banda et al. (Kluwer Academic, Dordrecht, 1995), pp. 155–181. doi 10.1007/978-94-011-0043-4-9

    Chapter  Google Scholar 

  62. C. Verati, H. Bertrand, and G. Feraud, “The innermost record of CAMP in West Africa: Precise 40Ar/39Ar dating and geochemistry of Taoudenni Basin intrusives (northern Mali),” Earth Planet. Sci. Lett. 235, 391–407 (2005).

    Article  Google Scholar 

  63. M. Wilson, “Thermal evolution of the Central Atlantic passive margins: continental break-up above a Mesozoic super-plume,” J. Geol. Soc. (London, U. K.) 154(3), 491–495 (1997).

    Article  Google Scholar 

  64. M. O. Withjack, R. W. Schlische, and P. E. Olsen, “Diachronous rifting, drifting, and inversion of the passive margin of central eastern North America: an analog for other passive margins,” AAPG Bull. 82, 817–835 (1998).

    Google Scholar 

  65. Y. Wu, K. E. Louden, T. Funck, H. R. Jackson, and S. A. Dehler, “Crustal structure of the central Nova Scotia margin off eastern Canada,” Geophys. J. Int. 166, 878–906 (2000). doi 10.1111/j.1365-246X.2006. 02991.x

    Article  Google Scholar 

  66. D. Zhao, “Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics,” Phys. Earth Planet. Inter. 146, 3–34 (2004).

    Article  Google Scholar 

  67. R. Züehlke, M.-S. Bouaouda, B. Ouajhain, T. Bechstädt, and R. Leinfelder, “Quantitative Meso-Cenozoic development of the eastern Central Atlantic continental shelf, western High Atlas, Morocco,” Mar. Petrol. Geol. 21, 225–276 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Melankholina.

Additional information

Original Russian Text © E.N. Melankholina, N.M. Sushchevskaya, 2015, published in Geotektonika, 2015, No. 1, pp. 86–106.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melankholina, E.N., Sushchevskaya, N.M. Development of passive volcanic margins of the Central Atlantic and initial opening of ocean. Geotecton. 49, 75–92 (2015). https://doi.org/10.1134/S0016852115010033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852115010033

Keywords

Navigation