Skip to main content
Log in

Spatiotemporal relationships of dike magmatism in the Kola region, the Fennoscandian Shield

  • Published:
Geotectonics Aims and scope

Abstract

A brief geological and petrographic characterization of the Early Precambrian dike complexes of the Kola region is given along with data on new estimates of dike age and analysis of their distribution over the entire Fennoscandian Shield. The emplacement of dikes in the Archean core of the shield continued after consolidation of the sialic crust 2.74–1.76 Ga ago. After the Svecofennian Orogeny, dikes continued to form in the west in the area of newly formed crust, while the amagmatic period began in the Archean domain. The intense formation of dikes in the Svecofennian domain lasted approximately for 1 Ga (1.8–0.84 Ga). The younger igneous rocks in the crustal domains of different age are less abundant and localized at their margins. A similar distribution of dikes is characteristic of other shields in different continents. This implies that the formation of the sialic crust in the shields is not completed by its consolidation and formation of the craton. For 1 Ga after completion of this process, the crust is underplated by mantle-derived magmas. This process is reflected at the Earth’s surface in the development of mantle-derived mafic and anorogenic granitoid magmatism. The process of crust formation is ended as the subcratonic lithosphere cools and the amagmatic period of the craton history is started. Beginning from this moment, the manifestations of cratonic magmatism were related either to the superposed tectonomagmatic reactivation of the cold craton under the effect of crust formation in the adjacent mobile belts or to the ascent of mantle plumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Arzamastsev and V. N. Glaznev, “Plume-Lithosphere Interaction in the Presence of an Ancient Sub-lithospheric Mantle Keel: An Example from the Kola Alkaline Province,” Dokl. Earth Sci. 419A(3), 384–387 (2008).

    Article  Google Scholar 

  2. A. A. Arzamastsev, Zh. A. Fedotov, and L. V. Arzamastseva, Dike Magmatism of the Northeastern Baltic Shield (Nauka, St. Petersburg, 2009) [in Russian].

    Google Scholar 

  3. A. A. Arzamastsev, P. Montero, A. V. Travin, L. V. Arzamastseva, F. Bea, and Zh. A. Fedotov, “Evidence for Sveconorwegian (Grenvillian) Magmatic Activity in the Northwestern Baltic Shield,” Dokl. Earth Sci. 410(7), 1034–1037 (2006).

    Article  Google Scholar 

  4. V. V. Balagansky, M. N. Bogdanova, and N. E. Kozlova, Structural and Metamorphic Evolution of the Northwestern Belomorian Region (Kola Branch, USSR Acad. Sci., Apatity, 1986) [in Russian].

    Google Scholar 

  5. Yu. A. Balashov, Zh. A. Fedotov, and P. K. Skuf’in, “Dating of the Lower Volcanic Sequence of the Pechenga Complex, Kola Peninsula,” Geokhimiya 24(12), 1769–1774 (1993).

    Google Scholar 

  6. T. B. Bayanova, Age of Reference Geological Complexes of the Kola Region and Duration of Geological Processes (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  7. T. B. Bayanova, F. Korfu, V. Todt, U. Poller, N. V. Levkovich, E. A. Apanasevich, and V. A. Zhavkov, “Heterogeneity of 91500 and TEMORA-1 Standarts for U-Pb Dating of Single Zircons,” in Abstracts of Papers at the 18th Symposium on Geochemistry of Isotopes (GEOKhI, Moscow, 2007), pp. 42–43 [in Russian].

    Google Scholar 

  8. T. B. Bayanova, F. P. Mitrofanov, and D. G. Egorov, “U-Pb Dating of the Dike Complex at the Kirovogorsk Deposit in the Iron Ore Formation of the Kola Peninsula,” Dokl. Earth Sci. 361(5), 688–691 (1998).

    Google Scholar 

  9. V. R. Vetrin and O. V. Gogol’, “Petrology of the Melanocratic Inclusions in Alkaline Granite of the Ponoi Massif (Kola Peninsula),” Geochem. Int. 34(6), 441–448 (1996).

    Google Scholar 

  10. V. R. Vetrin, I. L. Kamensky, T. B. Bayanova, N. Timmerman, B. V. Belyatsky, L. K. Levsky, and Yu. A. Balashov, “Melanocratic Nodules in Alkaline Granites of the Ponoi Massif, Kola Peninsula: A Key to Petrogenesis,” Geochem. Int. 37(11), 1061–1072 (1999).

    Google Scholar 

  11. V. R. Vetrin and N. V. Rodionov, “Geology and Geochronology of Neoarchean Anorogenic Magmatism of the Keivy Structure, Kola Peninsula,” Petrology 17(6), 537–557 (2009).

    Article  Google Scholar 

  12. L. L. Garifullin and E. V. Bykova, “Ovoid Gabbroanorthosite and Amphibolite of the Voron’ya Tundra,” in Mafic and Ultramafic Rocks of the Kola Peninsula (Nauka, Leningrad, 1967), pp. 55–62 [in Russian].

    Google Scholar 

  13. A. Z. Zhuravlev, D. Z. Zhuravlev, Yu. A. Kostitsyn, and I. V. Chernyshov, “Determination of the Sm/Nd Ratio for Geochronolgical Purposes,” Geokhimiya 25(8), 1115–1129 (1987).

    Google Scholar 

  14. N. M. Kudryashov and A. V. Mokrushin, “Mesoarchean Gabbroanorthosite Magmatism of the Kola Region: Petrochemical, Geochronological, and Isotope-Geochemical Data,” Petrology 19(2), 167–182 (2011).

    Article  Google Scholar 

  15. A. P. Lipov and Zh. A. Fedotov, “Regional Dike Complexes in Northeastern Kola Peninsula,” in Mafic-Ultramafic Magmatism in the Main Lithotectonic Zones of Kola Peninsula (Kola Branch, USSR Acad. Sci., Apatity, 1987), pp. 48–54 [in Russian].

    Google Scholar 

  16. Magmatism, Sedimentation, and Geodynamics of the Pechenga Paleorift (Kla Sci. Center, Russian Acad. Sci., Apatity, 1995) [in Russian].

  17. A. A. Polkanov, “Nonsymmetric Diabase Dike from the Shore of the Kola Fjord,” Trudy Leningradskogo Obshchestva Estestvoispytatelei 53(4), 75–163 (1928).

    Google Scholar 

  18. M. K. Radchenko, “Gabbroanorthosite Complex in the Area of Greater and Lesser El’sky-Medvezhy Lakes (Upper Ponoi Block),” in Mafic and Ultramafic Rocks of the Kola Peninsula (Kola Branch, USSR Acad. Sci., Apatity, 1987), pp. 40–48 [in Russian].

    Google Scholar 

  19. Layered Intrusions of the Monchegorsk Ore District: Petrology, Mineralization, Isotopes, and Deep Structure, Ed. by F. P. Mitrofanov and V. F. Smol’kin (Kola Sci. Center, Russian Acad. Sci., Apatity, 2004) [in Russian].

    Google Scholar 

  20. P. K. Skuf’in and T. B. Bayanova, “Early Proterozoic Central-Type Volcano in the Pechenga Structure and Its Relation to the Ore-Bearing Gabbro-Wehrlite Complex of the Kola Peninsula,” Petrology 14(6), 609–627 (2006).

    Article  Google Scholar 

  21. A. I. Slabunov, A. N. Larionov, and E. V. Bibikova, “Geology and Geochronology of the Shobozero Massif of the Lherzolite-Gabbronotite Complex in the Belomorian Mobile Belt,” in Geology and Mineral Resources of Karelia (Karelian Sci. Center, Russian Acad. Sci., Petrozavodsk, 2001), issue 3, pp. 3–14 [in Russian].

    Google Scholar 

  22. A. B. Snyatkov, A. M. Remizova, and V. V. Barzhitsky, “Complex of Mafic Sills and Dikes in the Central Part of the Keivy Structure,” in Swarms of Mafic Dikes as Indicators of Endogenic Regime (Kola Sci. Center, USSR Acad. Sci., Apatity, 1989), pp. 67–82 [in Russian].

    Google Scholar 

  23. O. G. Sorokhtin and S. A. Ushakov, Evolution of the Earth (IMoscow State Univ., Moscow, 2002) [in Russian].

    Google Scholar 

  24. V. S. Stepanov and A. I. Slabunov, Precambrian Amphibolites and Early Mafic and Ultramafic Rocks in Northern Karelia (Nauka, Leningrad, 1989) [in Russian].

    Google Scholar 

  25. A. V. Stepanova, A. N. Larionov, E. V. Bibikova, V. S. Stepanov, and A. I. Slabunov, “Early Proteorozoic (2.1Ga) Fe-Tholeiitic Magmatism of the Belomorian Province, Baltic Shield: Geochemistry and Geochronology,” Dokl. Earth Sci. 390(4), 607–610 (2003).

    Google Scholar 

  26. Zh. A. Fedotov, “Some Geochemical Features and Origin of Amphibolites in the Keivy District,” in Basic Magmatism in the Northeastern Baltic Shield (Nauka, Leningrad, 1969), pp. 89–105 [in Russian].

    Google Scholar 

  27. Zh. A. Fedotov, “The Petrochemical Pattern of the Mantle Pyrolite Melting in Coordinates Mg-(Fe + Ti)-Al: Forrmation Conditions of the Main Volcanic Series of Primary Magmas,” Petrology 20, no. 7 (in press).

  28. Zh. A. Fedotov and Yu. V. Amelin, “Posrsvecofennian Dolerite Dikes of the Kola Region: Dual Nature of Cratonic Magmatism,” Vestnik MGTU 1(3), 33–41 (1998).

    Google Scholar 

  29. Zh. A. Fedotov, P. A. Serov, and D. V. Elizarov, “Tholeiites from the Depleted Subcratonic Mantle in the Root Zone of the Monchegorsk Pluton, the Baltic Shield,” Dokl. Earth Sci. 427(5), 784–788 (2009).

    Google Scholar 

  30. Zh. A. Fedotov and M. G. Fedotova, “Turbid Plagioclases in Basic Intrusive Rocks of Kola Peninsula,” in Minerals and Mineral Assemblages of Rocks and Ores (Nauka, Leningrad, 1979), pp. 111–120 [in Russian].

    Google Scholar 

  31. M. G. Fedotova, “Caledonian Vein Mineralization at Murmansk and White Sea Shores of Kola Peninsula,” Preprint, 1990.

  32. V. V. Chashchin, T. B. Bayanova, and N. V. Levkovich, “Volcanoplutonic Association of the Early Stage Evolution of the Imandra-Varzuga Rift Zone, Kola Peninsula, Russia: Geological, Petrogeochemical, and Isotopic Geochronological Data,” Petrology 16(3), 279–298 (2008).

    Article  Google Scholar 

  33. B. A. Yudin, “Gabbrodiabase Complex in the District of Jupechkesty-Pogerjavr Lakes of the Northeastern Kola Peninsula,” in Proceedings on Geology and Metalogeny of Kola Peninsula (Kola Branch, USSR Acad. Sci., Apatity, 1972), No. 4, pp. 87–91 [in Russian].

    Google Scholar 

  34. Yu. V. Amelin, L. M. Heaman, and V. S. Semenov, “U-Pb Geochronology of Layered Mafic Intrusions in the Eastern Baltic Shield: Implication for the Timing and Duration of Paleoproterozoic Continental Rifting,” Precambr. Res. 75, 31–46 (1995).

    Article  Google Scholar 

  35. T. Bayanova, J. Ludden, and F. Mitrofanov, “Timing and Duration of Paleoproterozoic Events Producing Ore-Bearing Layered Intrusions of the Baltic Shield: Metallogenic, Petrologic, and Geodynamic Implications,” Geol. Society London Spec. Publ. 323, 165–198 (2009).

    Article  Google Scholar 

  36. D. M. Boyd and D. H. Tucker, Australian Magnetic Dykes, in Mafic Dykes and Emplacement Mechanisms, Ed. by A. J. Parker, P. C. Rickwood, and D. H. Tucker, (Balkema, (Rotterdam, 1990), pp. 391–399.

  37. D. Bridgwater and W. T. Harry, “Anorthosite Xenoliths and Plagioclase Megacrysts in Precambrian Intrusions of South Greenland,” Medd. Grönland 185(2), 1–243 (1968).

    Google Scholar 

  38. K. L. Buchan and H. C. Halls, “Paleomagnetism of Proterozoic Mafic Dyke Swarms of the Canadian Shield,” in Mafic Dykes and Emplacement Mechanisms, Ed. by A. J. Parker, P. C. Rickwood, and D. H. Tucker, (Balkema, (Rotterdam, 1990), pp. 209–230.

  39. K. C. Condie, “Sources of Proterozoic Mafic Dyke Swarms: Constraints from Th/Ta and La/Yb Rations,” Precambr. Res. 81(1/2), 3–14 (1997).

    Article  Google Scholar 

  40. D. J. De Paolo, “Neodymium Isotopes in the Colorado Front Range and Crust-Mantle Evolution in the Proterozoic,” Nature 291, 193–196 (1981).

    Article  Google Scholar 

  41. Fedotov Zh.A. and Amelin Yu.V. “Dyke Magmatism on the Kola Peninsula as Reflecting Proterosoic Activity of the Belomorian Mobile Zone in Adjacent Stable Megablocks,” in Abstracts of the International IGCP Symposium, project 257 “Precambrian Dyke Swarms” and Project 275 “Deep Geology of the Baltic Shield” (1992), pp.20–22.

  42. Europrobe 1996—Lithosphere Dynamics: Origin and Evolution of Continents, Ed. by D. G. Gee and H. J. Zeyen (Europrobe Secretariate, Uppsala University, 1996).

  43. R. C. O. Gill and D. Bridgwater, “Early Archean Basic Magmatism in West Greenland: The Geochemistry of the Ameralik Dykes,” J. Petrolgy 20(4), 695–726 (1979).

    Article  Google Scholar 

  44. D. P. Gladkochub, S. A. Pisarevsky, T. V. Donskaya, R. E. Ernst, M. T. D. Wingate, U. Soderlund, A. M. Mazukabzov, E. V. Sklyarov, M. A. Hamilton, and J. A. Hanes, “Proterozoic Mafic Magmatism in Siberian Craton: An Overview and Implications for Paleocontinental Reconstruction,” Precambr. Res. 183(3), 660–668 (2010).

    Article  Google Scholar 

  45. R. Gorbatschev, A. Lindh, Z. Solyom, et al., “Mafic Dyke Swarms of the Baltic Shield,” Can. J. Earth Sci. Spec. Papers 34, 361–372 (1987).

    Google Scholar 

  46. R. P. Hall and D. J. Hughes, “Precambrian Mafic Dykes of Southern Greenland,” in Mafic Dykes and Emplacement Mechanisms, Mafic Dykes and Emplacement Mechanisms, Ed. by A. J. Parker, P. C. Rickwood, and D. H. Tucker (Balkema, Rotterdam, 1990), pp. 481–496

  47. E. Hanski, “Gabbro-Wehrlite Association in the Eastern Baltic Shield,” in Geology and Metallogeny of Copper Deposits (Springer, Berlin, 1986), Vol. 4, pp. 151–170.

    Chapter  Google Scholar 

  48. H. Huhma, V. F. Smolkin, E. J. Hanski, et al., “Sm-Nd Isotope Study of the Nyasyukka Dyke Complex in the Northern Pechenga Area, Kola Peninsula, Russia,” in Abstract of JGSP project 336 Symposium in Rovaniemi, Finland (1996), pp. 57–58.

  49. S. B. Jacobsen and G. J. Wasserburg, “Sm-Nd Isotopic Evolution of Chondrites and Achondrites, II,” Earth Planet. Sci. Lett. 67, 137–150 (1984).

    Article  Google Scholar 

  50. L. Johanson and A. Johanson, “Isotope Geochemistry and Age Relationships of Mafic Intrusions along Protogine Zone, S. Sweden,” Precambr. Res. 48(4), 395–414 (1990).

    Article  Google Scholar 

  51. U. Kramm, L. N. Kogarko, V. A. Kononova, et al., “The Kola Alkaline Province of the CIS and Finland: Precise Rb-Sr Ages Define 380–360 Ma Ages Range for All Magmatism,” Lithos 30, 33–44 (1993).

    Article  Google Scholar 

  52. T. E. Krogh, “A Low-Contamination Method for Hydrothermal Dissolution of Zircon and Extraction of U and Pb for Isotopic Age Determinations,” Geochim. Cosmochim. Acta 37, 485–494 (1973).

    Article  Google Scholar 

  53. K. R. Ludwig, PBDAT—a Computer Program for Processing Pb-U-Th Isotope Data, Version 1.22 (USGS Open-File Report 88-542,1991).

  54. K. R. Ludwig, ISOPLOT/Ex—a Geochronological Toolkit for Microsoft Excel, Version 2.05 (Geochronology Center Special Publ. No. 1a, Berkeley, 1999).

  55. P. R. May, “Pattern of Triassic-Jurassic Diabase Dikes around the North Atlantic in Context of Predrift Position of the Continents,” Geol. Soc. Am. Bull. 82, 1285–1291 (1971).

    Article  Google Scholar 

  56. J. S. Stacey and J. D. Kramers, “Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model,” Earth Planet. Sci. Lett. 26(2), 207–221 (1975).

    Article  Google Scholar 

  57. R. H. Steiger, and E. Jäger, “Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology,” Earth Planet. Scl. Lett 36(3), 359–362 (1977).

    Article  Google Scholar 

  58. W. Teixeira, “The Proterozoic Mafic Dyke Swarms and Alkaline Intrusions in the Amasonian Craton, South America and Their Tectonic Evolution Based on Rb-Sr, K-Ar and 40Ar/39Ar Geochronology,” in Mafic Dykes and Emplacement Mechanisms, Ed. by A. J. Parker, P. C. Rickwood, and D. H. Tucker, (Balkema, Rotterdam, 1990), pp. 285–294

    Google Scholar 

  59. J. Vuollo, Palaeoproterozoic Basic Igneous Events in Eastern Fennoscandian Shield between 2.45 and 1.97 Ga Studied by Means of Mafic Dyke Swarms and Ophiolites in Finland (Acta Univ., Ouluensis, 1994), Ser. A250.

    Google Scholar 

  60. J. Vuollo and Y. Huhma, “Palaeoproterozoic Mafic Dikes in NE Finland,” in Precambrian Geology of Finland—Key to the Evolution of the Fennoscandian Shield (Elsevier, (Amsterdam, 2005), pp. 193–235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. A. Fedotov.

Additional information

Original Russian Text © Zh.A. Fedotov, T.B. Bayanova, P.A. Serov, 2012, published in Geotektonika, 2012, Vol. 46, No. 6, pp. 29–45.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedotov, Z.A., Bayanova, T.B. & Serov, P.A. Spatiotemporal relationships of dike magmatism in the Kola region, the Fennoscandian Shield. Geotecton. 46, 412–426 (2012). https://doi.org/10.1134/S0016852112060039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852112060039

Keywords

Navigation