Skip to main content
Log in

Recent mountain building of the central Alpine-Himalayan Belt

  • Published:
Geotectonics Aims and scope

Abstract

From the end of the Eocene through the Pliocene, the Alpine-Himalayan Belt underwent collisional shortening induced by convergence of the Gondwana plates with the Eurasian Plate and varied in orientation from the north-northwestern to the northeastern directions. The collisional shortening was expressed in folding, thrusting of continental crustal tectonic sheets over one another, and closure of the residual basins of Neotethys and its backarc seas; it resulted in local thickening of the crust and its isostatic uplifting. As a rule, the uplifts were not higher than ∼1.5 km. In other words, before the Pliocene, the growth of local mountain edifices was caused by collisional shortening of the belt. Isostatic uplifting of the thickened crust was continued in the Pliocene and Quaternary even more intensely than before, but the general rise of the mountain systems was superposed on this process. The rise substantially exceeded in amplitude the contribution of the uplift caused by shortening and did not depend on the preceding Cenozoic history of either territory. Not only the mountain ridges but also most adjacent basins were involved in rising, which eventually led to the contemporary mountain topography of the belt. The spread of the hot and fluidenriched asthenosphere of the closed Tethys beneath the orogenic belt could have been a cause of such additional rising. The uplift was an isostatic reaction to decompaction of the lithospheric mantle partly replaced with asthenosphere and of the lower crust subject to retrograde metamorphism under the effect of cooled asthenospheric fluids. The deep transformations are also probably responsible for deepening of some basins in the Pliocene-Quaternary and more contrasting transverse segmentation of the belt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Artyushkov, Physical Tectonics (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  2. E. V. Artyushkov, “Abrupt Continental Lithosphere Weakening as a Precondition for Fast and Large-Scale Tectonic Movements,” Geotectonics 37(2), 107–123 (2003).

    Google Scholar 

  3. Bazhenov, M.L. and Burtman, V.S., Structural Arcs of the Alpine Belt: The Carpathians-Caucasus-Pamirs (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  4. D. M. Bachmanov, V. G. Trifonov, A. V. Mikolaichuk, F. A. Vishnyakov, and A. A. Zarshchikov, “The Ming-Kush-Kökömeren Zone of Recent Transpression in the Middle Tien Shan,” Geotectonics 42(3), 186–205 (2008).

    Article  Google Scholar 

  5. D. M. Bachmanov, V. G. Trifonov, A. V. Mikolaichuk, A. E. Dodonov, A. A. Zarshchikov, and F. A. Vishnyakov, “Neotectonic Evolution of the Central Tien Shan from the Data on Structure of Recent Basins,” in Geodynamics of Intracontinental Orogens and Geoenvironmental Problems (Sci. Station RAS, Bishkek, 2009), pp. 12–19 [in Russian].

    Google Scholar 

  6. B. M. Bogachkin, History of Tectonic Evolution of the Gorny Altai in Cenozoic (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  7. V. S. Burtman, “Relationships between the Pamir and the Tien Shan in Cretaceous and Cenozoic,” in Geodynamics of the Lithosphere (Nauka, Moscow, 1999), pp. 144–178 [in Russian].

    Google Scholar 

  8. L. P. Vinnik, I. M. Aleshin, M. K. Kaban, S. G. Kiselev, G. L. Kosarev, S. I. Oreshin, and Ch. Reigber, “Crust and Mantle of the Tien Shan from Data of the Receiver Function Tomography,” Izv. Physics Solid Earth 42(8), 639–651 (2006).

    Article  Google Scholar 

  9. Lithosphere of the Tien Shan, Ed. by I. E. Gubin (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  10. E. V. Devyatkin, Cenozoic Sedimentary Rocks and Neotectonics of the Southeastern Altai (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  11. E. L. Dmitrieva and S. A. Nesmeyanov, Mammalia and Stratigraphy of the Tertiary Continental Sedimentary Rocks of Southeastern Central Asia (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  12. Geology and Mineral Resources of Afghanistan, Book 1: Geology, Ed. by V. I. Dronov (Nedra, Moscow, 1980) [in Russian].

    Google Scholar 

  13. A. V. Ershov and A. M. Nikishin, “Recent Geodynamics of the Caucasus-Arabia-East Africa Region,” Geotectonics 38(2), 123–136 (2004).

    Google Scholar 

  14. D. Zhao, F. Piraino, and L. Liu, “Structure and Dynamics of the Mantle beneath Eastern Russia and Adjacent Regions,” Geol. Geofiz. 51(9), 1188–1203 (2010).

    Google Scholar 

  15. The Earth’s Crust and Upper Mantle of Tajikistan (Donish, Dushanbe, 1981) [in Russian].

  16. V. S. Zykin and A. Yu. Kazansky, “Stratigraphy and Paleomagnetism of the Cenozoic (pre-Quaternary) Sedimentary Rocks of the Chuya Basin in the Gorny Altai,” Geol. Geofiz. 36(10), 75–90 (1995).

    Google Scholar 

  17. T. P. Ivanova and V. G. Trifonov, “Neotectonics and Mantle Earthquakes in the Pamir-Hindu Kush Region,” Geotectonics 39(1), 56–68 (2005).

    Google Scholar 

  18. M. K. Kaban, “Gravitational Model of the Lithosphere and Geodynamics,” in Neotectonics, Geodynamics, and Seismicity of Northern Eurasia (Inst. Physics Earth, Moscow, 2000), pp. 267–290 [in Russian].

    Google Scholar 

  19. O. V. Kazakov and E. V. Vasil’eva, Geology of Deep Basins in the Mediterranean Sea (Nedra, Moscow, 1992) [in Russian].

    Google Scholar 

  20. V. G. Kaz’min, “Some Features of Rifting: Evolution of the Red Sea, Aden, and Ethiopian Rifts,” Geotektonika 8(6), 3–14 (1974).

    Google Scholar 

  21. V. G. Kaz’min, L. I. Lobkovsky, and N. F. Tikhonova, “Late Cretaceous-Paleogene Deepwater Basin of North Afghanistan and the Central Pamirs: Issue of Hindu Kush Earthquakes,” Geotectonics 44(2), 127–138 (2010).

    Article  Google Scholar 

  22. A. L. Knipper, A. A. Saveliev, and M. Rukieh, “Ophiolite Association of Northwestern Syria,” Geotektonika 22(1), 92–104 (1988).

    Google Scholar 

  23. M. L. Kopp, Structures of Lateral Extrusion in the Alpine-Himalayan Collision Belt (Nauchnyi mir, Moscow, 1997) [in Russian].

    Google Scholar 

  24. M. L. Kopp and I. G. Shcherba, “Relationship of Tectonic and Eustatic Factors in Evolution of Cenozoic Basins in the North of the Mediterranean Belts,” Byull. Mosk. O-va Ispyt. Prirody, Otd. Geol. 68(6), 15–31 (1993).

    Google Scholar 

  25. N. V. Koronovsky and L. I. Demina, “Collision Stage of the Evolution of the Caucasian Sector of the Alpine Foldbelt: Geodynamics and Magmatism,” Geotectonics 33(2), 102–118 (1999).

    Google Scholar 

  26. N. V. Koronovsky and L. I. Demina, “Late Cenozoic Volcanism of the Greater Caucasus,” in The Greater Caucasus in the Alpine Epoch (GEOS, Moscow, 2007), pp. 251–284 [in Russian].

    Google Scholar 

  27. V. N. Krestnikov, T. P. Belousov, V. I. Ermilin, N. V. Chigarev, and D. V. Stange, Quaternary Tectonics of the Pamirs and Tien Shan (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  28. A. Ya. Krylov, “Absolute Age of Rocks in the Central Tien Shan and Application of Argon Method to Metamorphic and Sedimentary Rocks,” in Reports of Soviet Geologists at XXI IGC, Problem 3 (Izd. AN SSSR, Moscow, 1960), pp. 222–244 [in Russian].

    Google Scholar 

  29. M. G. Leonov, Wild Flysch of the Alpine Region (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  30. Geology of Syria, Ed. by Yu. G. Leonov (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  31. The Greater Caucasus in the Alpine Epoch, Ed. by Yu. G. Leonov (GEOS, Moscow, 2007) [in Russian].

    Google Scholar 

  32. Yu. G. Leonov, M. P. Antipov, Yu. A. Volozh, et al., “Fluctuations of Sea Level of the Caspian Sea: Geological Aspects,” in Global Variations of Natural Environment (Izd-vo SO RAN, Novosibirsk, 1998), pp. 30–57 [in Russian].

    Google Scholar 

  33. F. A. Letnikov, “Magma-Forming Fluid Systems in the Continental Lithosphere,” Geol. Geofiz. 44(12), 1262–1269 (2003).

    Google Scholar 

  34. L. I. Lobkovsky and V. D. Kotelkin, “Oceanic History and Asymmetry of the Earth from Viewpoint of Thermochemical Mantle Convection,” in Tectonics and Geodynamics of Phanerozoic Foldbelts and Platforms (GEOS, Moscow, 2010), Vol. 1, pp. 423–427 [in Russian].

    Google Scholar 

  35. A. A. Lukk and L. P. Vinnik, “Deep Structure of the Pamirs: Tectonic Interpretation,” Geotektonika 9(5), 73–80 (1975).

    Google Scholar 

  36. V. I. Makarov, Neotectonic Structure of the Central Tien Shan (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  37. Contemporary Geodynamics in the Regions of Intracontinental Collisional Mountain Building in Central Asia, Ed. by V. I. Makarov (Nauchnyi mir, Moscow, 2005) [in Russian].

    Google Scholar 

  38. E. E. Milanovsky, Neotectonics of the Caucasus (Nedra, Moscow, 1968).

    Google Scholar 

  39. E. E. Milanovsky and N. V. Koronovsky, Orogenic Volcanism and Tectonics of the Alpine Belt of Eurasia (Nedra, Moscow, 1973) [in Russian].

    Google Scholar 

  40. S. A. Nesmeyanov, V. Yu. Reshetov, and G. A. Schmidt, “Fauna and Age of the Toruaygyr Occurrence of Mammalia in Kirgiziya,” Byull. Mosk. O-va Ispyt. Prir., Otd. Geol. 52(2), 83–86 (1977).

    Google Scholar 

  41. V. A. Obruchev, “Main Features of Kinematics and Plasticity of Neotectonics,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 5, 13–24 (1948).

  42. E. Otani and D. Zhao, “Role of Water in Deep Processes in the Upper Mantle and Transitional Layer: Dehydration of Stagnant Subduction Plates and Its Implication for the Great Mantle Wedge,” Geol. Geofiz. 50(12), 1375–1392 (2009).

    Google Scholar 

  43. V. A. Simonov, A. V. Mikolaichuk, S. V. Kovyazin, A. V. Travin, M. M. Buslov, and E. R. Sobel, “Mesozoic and Cenozoic Plume-Related Magmatism of the Central Tien Shan: Age and Physicochemical Characteristics,” in Geodynamics and Geoecology of High-Mountain Regions in the 21st Century (Sci. Station RAS, Bishkek, 2005), pp. 182–186 [in Russian].

    Google Scholar 

  44. S. Yu. Sokolov and V. G. Trifonov, “Role of the Asthenosphere in Transfer and Deformation of the Lithosphere: The Ethiopian-Afar Superplume and the Alpine-Himalayan Belt,” Geotectonics 46(3), 171–184 (2012).

    Article  Google Scholar 

  45. O. G. Sorokhtin and S. A. Ushakov, Evolution of the Earth (Moscow State Univ., Moscow, 2002) [in Russian].

    Google Scholar 

  46. V. G. Trifonov, Neotectonics of Eurasia (Nauchnyi mir, Moscow, 1999) [in Russian].

    Google Scholar 

  47. V. G. Trifonov, E. V. Artyushkov, A. E. Dodonov, D. M. Bachmanov, A. V. Mikolaichuk, and F. A. Vishnyakov, “Pliocene-Quaternary Mountain Building in the Central Tien Shan,” Geol. Geofiz. 49(2), 128–145 (2008).

    Google Scholar 

  48. V. G. Trifonov, O. V. Soboleva, R. V. Trifonov, and G. A. Vostrikov, Recent Geodynamics of the Alpine-Himalayan Collisional Belt (GEOS, Moscow, 2002) [in Russian].

    Google Scholar 

  49. A. K. Trofimov, “Main Stages in Development of Topography in the Central Asian Mountains: Staged Topography of the Central Asian Mountains and Correlative Sediments,” in Geological Evolution of the Tien Shan in Cenozoic (Ilim, Frunze, 1973), pp. 98–127 [in Russian].

    Google Scholar 

  50. V. P. Trubitsin, “Tectonics of Floating Continents,” Vestnik Ross. Akad. Nauk, No. 1, 10–21 (2005).

  51. V. E. Khain, Tectonics of Continents and Oceans (Nauchnyi mir, Moscow, 2001) [in Russian].

    Google Scholar 

  52. O. K. Chediya, Morphostructures and Recent Tectogenesis of the Tien Shan (Ilim, Frunze, 1986) [in Russian].

    Google Scholar 

  53. V. A. Shvolman, Tectonic Evolution of the Pamirs in the Late Cretaceous and Paleogene (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  54. V. I. Shevchenko, T. V. Guseva, A. A. Lukk, A. V. Mishin, M. T. Prilepin, R. E. Reilinger, M. W. Hamburger, A. G. Shempelev, and S. L. Yunga, “Recent Geodynamics of the Caucasus Mountains from GPS and Seismological Evidence,” Izv. Physics Solid Earth 35(9), 691–704 (1999).

    Google Scholar 

  55. S. S. Shulz, Analysis of Recent Tectonics and Topography of the Tien Shan (Geografgiz, Moscow, 1948) [in Russian].

    Google Scholar 

  56. I. G. Shcherba, “Paleogene Basin of the Caucasus,” Byull. Mosk. O-va Ispyt. Prirody, Otd. Geol. 69, 71–80 (1994).

    Google Scholar 

  57. J. C. Aitchison, J. R. Ali, and A. V. Davis, “When and where Did India and Asia Collide?,” J. Geophys. Res. 112, 1–19 (2007).

    Article  Google Scholar 

  58. G. A. F. Almeida, “Structural History of the Red Sea Rift,” Geotectonics 44(3), 271–282 (2010).

    Article  Google Scholar 

  59. M. E. Artemjev and M. K. Kaban, “Density Inhomogeneities, Isostasy and Flexural Rigidity of the Lithosphere in the Transcaspian Region,” Tectonophysics 240, 281–297 (1994).

    Article  Google Scholar 

  60. E. V. Artyushkov, M. A. Baer, and N.-A. Mörner, “The East Carpathians: Indications of Phase Transitions, Lithospheric Failure and Decoupled Evolution of Thrust Belt and Its Foreland,” Tectonophysics 262, 101–132 (1996).

    Article  Google Scholar 

  61. Z. Ben-Avraham, A. Ginzburg, J. Markis, and L. Eppelbaum, “Crustal Structure of the Levant Basin, Eastern Mediterranean,” Tectonophysics 346, 23–43 (2002).

    Article  Google Scholar 

  62. Y. Ben-Gai, Z. Ben-Avraham, B. Buchbinder, and C. G. St. C. Kendall, “Post-Messinian Evolution of the Southeastern Levant Margin Based on Stratigraphic Modeling,” in Proceedings of the 5th Intern. Sympos. on Eastern Mediterranean Geology (Thessaloniki, 2004), pp. 32–34.

  63. P. G. DeCelles, J. Quade, P. Kapp, M. Fan, D. L. Dettman, and L. Ding, “High and Dry in Central Tibet during the Late Oligocene,” Earth Planet Sci. Lett 253, 389–401 (2007).

    Article  Google Scholar 

  64. J. De Grave, M. M. Buslov, and H. Van der Haute, “Distant Effects of India-Eurasia Convergence and Mesozoic Intracontinental Deformation in Central Asia: Constraints from Apatite Fission-Track Thermochronology,” J. Asian Earth Sci. 29, 188–204 (2007).

    Article  Google Scholar 

  65. C. J. Ebinger and N. S. Sleep, “Cenozoic Magmatism throughout East Africa Resulting from Impact of a Single Plume,” Nature 395(22), 788–791 (1998).

    Article  Google Scholar 

  66. Z. Garfunkel, “Constrains on the Origin and History of the Eastern Mediterranean Basin,” Tectonophysics 298, 5–35 (1998).

    Article  Google Scholar 

  67. Z. Garfunkel and Z. Ben-Avraham, “Basins along the Dead Sea Transform,” Memóires du Muséum national d’Historie naturelle, 186, 607–627 (2001).

    Google Scholar 

  68. J. Golonka, “Plate Tectonic Evolution of the Southern Margin of Eurasia in the Mesozoic and Cenozoic,” Tectonophysics 381, 235–273 (2004).

    Article  Google Scholar 

  69. F. Gomez, M. Khawlie, C. Tabet, A. N. Darkal, K. Khair, and M. Barazangi, “Late Cenozoic Uplift along the Northern Dead Sea Transform in Lebanon and Syria,” Earth Planet. Sci. Lett. 241, 913–931 (2006).

    Article  Google Scholar 

  70. S. Guillot, A. Replumaz, K. H. Hattori, and P. Strzerzynski, “Initial Geometry of Western Himalaya and Ultrahigh-Pressure Metamorphic Evolution,” J. Asian Earth Sci. 30, 557–564 (2007).

    Article  Google Scholar 

  71. I. Jiménez-Munt, M. Fernández, J. Vergés, and J. P. Platt, “Lithosphere Structure underneath the Tibetan Plateau Inferred from Elevation, Gravity, and Geoid Anomalies,” Earth Planet. Sci. Lett. 267, 276–289 (2008).

    Article  Google Scholar 

  72. A. Y. Izzeldin, “Seismic, Gravity, and Magnetic Surveys in the Central Part of the Red Sea: Their Interpretation and Implications for the Structure and Evolution of the Red Sea,” Tectonophysics 143, 269–306 (1987).

    Article  Google Scholar 

  73. A. Karakhanian, R. Djrbashian, V. Trifonov, H. Philip, S. Arakelian, and A. Avagyan, “Holocene-Historical Volcanism and Active Faults as Natural Risk Factor for Armenia and Adjacent Countries,” J. Volcanol. Geotherm. Res. 113(1/2), 319–344 (2002).

    Article  Google Scholar 

  74. D. Klaeschen, N. Vidal, A. J. Kopf, R. von Huene, and V. A. Krasheninnikov, “Reflectionseismic Processing and Images of the Eastern Mediterranean from Cruise 5 of the Research Vessel “Akademik Nikolaj Strakhov,” in Geological Framework of the Levant, Vol. II: The Levantine Basin and Israel; Part III: The Levantine Basin (Historical Production-Hall, Jerusalem, 2005), pp. 21–40.

    Google Scholar 

  75. I. Kovács and Cs. Szabo, “Middle Miocene Volcanism in the Vicinity of the Middle Hungarian Zone: Evidence for an Inherited Enriched Mantle Source,” J. Geodynamics 45, 1–17 (2008).

    Article  Google Scholar 

  76. K. A. Krylov, S. A. Silantyev, and V. A. Krasheninnikov, “The Tectonic Structure and Evolution of Southwestern and Central Cyprus,” in Geological Framework of the Levant, Vol. I: Cyprus and Syria; Part I: Southwestern Cyprus (Historical Production-Hall, Jerusalem, 2005), pp. 135–164.

    Google Scholar 

  77. Li Jijun, Uplift of the Qinghai-Xizang (Tibet) Plateau and Global Change (Univ. Press, Lanzhou, 1995).

    Google Scholar 

  78. Li Zhiwei, S. Roeker, Li Zhihai, Wei Bin, Wang Haitao, G. Schelochkov, and V. Bragin, “Tomographic Image of the Crust and Upper Mantle beneath the Western Tien Shan from the MANAS Broadband Deployment: Possible Evidence for Lithospheric Delamination,” Tectonophysics 477 (2009).

  79. Y. Mart, W. B. F. Ryan, and D. Vachtman, “Fluvial Erosian in the Bathyal SE Mediterranean during the Messinian Desiccation,” Proceedings of the 5th Intern. Sympos. on Eastern Mediterranean Geology (Thessaloniki, 2004), pp. 1356–1358.

  80. P. Molnar and W. P. Chen, “Evidence for Large Cenozoic Crustal Shortening of Asia,” Nature 273, 218–220 (1978).

    Article  Google Scholar 

  81. N.-A. Mörner, “Uplift of the Tibetan Plateau: a Short Review,” in Intern. Union for Quaternary Res.: The 13th Intern. Congr. Special Proc. Review Reports (Beijing, 1991), pp. 78–80.

  82. A. M. Nikishin, P. A. Ziegler, D. I. Panov, B. P. Nazarevich, M.-F. Brunet, R. A. Stephenson, S. N. Bolotov, M. V. Korotaev, and P. L. Tikhomirov, “Mesozoic and Cenozoic Evolution of the Scythian Platform-Black Sea-Caucasus Domain,” Memóires du Muséum national d’Historie naturelle, 186, 295–346 (2001).

    Google Scholar 

  83. Z. Pécskay, J. Lexa, A. Szakács, et al., “Space and Time Distribution of Neogene-Quaternary Volcanism in the Carpatho-Pannonian Region,” Acta Vulcanol. 7(2), 15–28 (1995).

    Google Scholar 

  84. A. H. F. Robertson, “Mesozoic-Tertiary Tectonic-Sedimentary Evolution of South Tethyan Oceanic Basin and Its Margins in Southern Turkey,” Geol. Soc. London Spec. Publ. 173, 97–138 (2000).

    Article  Google Scholar 

  85. A. Robertson, Ü. C. Unlüen’li, “The Misis-Andirin Complex: a Mid-Tertiary Melange Related to Late-Stage Subduction of the Southern Neotethys in S. Turkey,” J. Asian Earth Sci. 22(5), 413–453 (2004).

    Article  Google Scholar 

  86. D. A. Ross and E. Uchupi, “The Structure and Sedimentary History of the Southeastern Mediterranean Sea,” Amer. Assoc. Petrol. Geol. Bull. 61, 872–902 (1977).

    Google Scholar 

  87. M. Rukieh, V. G. Trifonov, A. E. Dodonov, H. Minini, O. Ammar, T. P. Ivanova, T. Zaza, A. Yusef, M. Al-Shara, and Y. Jobaili, “Neotectonic Map of Syria and Some Aspects of Late Cenozoic Evolution of the Northwestern Boundary Zone of the Arabian Plate,” J. Geodynamics 40, 235–256 (2005).

    Article  Google Scholar 

  88. F. Saroglu, “Age and Offset of the North Anatolian Fault,” METU J. Pure Applied Sci. 21(1/3), 65–79 (1988).

    Google Scholar 

  89. M. P. Searle, Geology and Tectonics of the Karakorum Mountains (Wiley, Chichester, 1991).

    Google Scholar 

  90. M. P. Searle, “Cooling History, Exhumation and Kinematics of the Himalaya-Karakorum-Tibet Orogenic Belt,” in The Tectonic Evolution of Asia, Ed. by A. Yin and T. M. Harrison (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  91. P. Tapponnier, M. Mattauer, F. Proust, and C. Cassaigneau, “Mesozoic Ophiolites, Sutures, and Large-Scale Tectonic Movements in Afghanistan,” Earth Planet. Sci. Lett. 52, 355–371 (1981).

    Article  Google Scholar 

  92. A. P. Tewari, “On the Upper Tertiary Deposits of Ladakh Hymalayas and Correlation of Various Geotectonic Units of Ladakh with Those of the Kumion-Tibet Region,” in The 22th IGC Rep. (New Delhi, 1964), vol. 2, pp. 37–58.

    Google Scholar 

  93. V. G. Trifonov, A. E. Dodonov, E. V. Sharkov, D. I. Golovin, I. V. Chernyshev, V. A. Lebedev, T. P. Ivanova, D. M. Bachmanov, M. Rukieh, O. Ammar, H. Minini, A.-M. Al Kafri, and O. Ali, “New Data on the Late Cenozoic Basaltic Volcanism in Syria, Applied to Its Origin,” J. Volcanol. Geotherm. Res. 199, 177–192 (2011).

    Article  Google Scholar 

  94. S. Turner, Ch. Hawkesworth, J. Liu, N. Rogers, S. Kelly, and P. van Calsteren, “Uplift-Related Magmatism of the Tibetan Plateau,” Terra Nova 5 (1993).

  95. P. R. Vail and R. M. Mitchum, “Global Cycles of Sea-Level Change and Their Role in Exploration,” in Proceedings of the 10th Petroleum Congress (Heyden, London, 1980), Vol. 2, pp. 95–104.

    Google Scholar 

  96. Yu. Wang, X. Zhang, Ch. Jiang, H. Wei, and J. Wah, “Tectonic Controls on the Late Miocene-Holocene Volcanic Eruptions of the Tengchong Volcanic Field along the Southeastern Margin of the Tibetan Plateau,” J. Asian Earth Sci. 30, 375–389 (2007).

    Article  Google Scholar 

  97. R. Westaway, “Kinematic Consistency between the Dead Sea Fault Zone and the Neogene and Quaternary Left-Lateral Faulting in SE Turkey,” Tectonophysics 391(1/4), 203–237 (2004).

    Article  Google Scholar 

  98. R. Westaway, T. Demir, A. Seyrek, and A. Beck, “Kinematics of Active Left-Lateral Faulting in Southeast Turkey from Offset Pleistocene River Gorges; Improved Constraint on the Rate and History of Relative Motion between the Turkish and Arabian Plates,” J. Geol. Soc. London 163, 149–164 (2006).

    Article  Google Scholar 

  99. Zhang Qingsong, Zhou Yaofei, Lu Xiangshun, and Xu Qiuliu, “On the Present Speed of Tibetan Plateau,” in Intern. Union for Quaternary Res.: The 13th Intern. Congr. Abstracts (Beijing, 1991), p. 423.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Trifonov.

Additional information

Original Russian Text © V.G. Trifonov, T.P. Ivanova, D.M. Bachmanov, 2012, published in Geotektonika, 2012, Vol. 46, No. 5, pp. 3–21.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trifonov, V.G., Ivanova, T.P. & Bachmanov, D.M. Recent mountain building of the central Alpine-Himalayan Belt. Geotecton. 46, 315–332 (2012). https://doi.org/10.1134/S0016852112050068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852112050068

Keywords

Navigation