Skip to main content
Log in

Role of the asthenosphere in transfer and deformation of the lithosphere: The Ethiopian-Afar superplume and the Alpine-Himalayan Belt

  • Published:
Geotectonics Aims and scope

Abstract

Seismic tomographic data showing the mantle structure of the Ethiopian-Afar superplume and various segments of the Alpine-Himalayan Orogenic Belt and their relationships with the adjacent megastructures of the Earth are presented. These data and their correlation with the geological evidence lead to the conclusion that lateral flows of mantle material are crucial for the evolution of the Tethys and its closure in the Cenozoic with transformation into an orogenic belt. The lateral flow of hot upper mantle asthenospheric matter spreading from the stationary superplume extending in the meridional direction (in present-day coordinates) was responsible for the accretion of the fragments torn away from Gondwana to Eurasia and for the development of subduction at the northeastern flank of the Tethys. The characteristic upper mantle structure of cold slabs passing into nearly horizontal lenses with elevated seismic wave velocity in the lowermost upper mantle is currently retained in the Indonesian segment of the orogenic belt. In the northwestern segments of this belt, a hot asthenospheric flow reached its northern margin after closure of the Tethys and onset of collision, having reworked the former structure of the upper mantle and enriched it in aqueous fluids. The effect of this active asthenosphere on the lithosphere gave rise to intense Late Cenozoic deformation, magmatism, and eventually resulted in mountain building.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Anderson and A. M. Dziewonski, “Seismic Tomography,” Sci. Amer. 251(4), 60–68 (1984).

    Article  Google Scholar 

  2. E. V. Artyushkov, Physical Tectonics (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  3. E. V. Artyushkov, “Abrupt Continental Lithosphere Weakening as a Precondition for Fast and Large-Scale Tectonic Movements,” Geotectonics 37(2), 107–123 (2003).

    Google Scholar 

  4. S. N. Bubnov, Yu. V. Goltsman, and B. G. Pokrovsky, “Sr, Nd, and O Isotopic Systems As Indicators of Origin and Evolution of Primary Melts of Recent Lavas in the Elbrus Volcanic Region, the Greater Caucasus,” in Proceedings of 14th Symposium on Isotope Geochemistry (GEOKhI, Moscow, 1995), pp. 28–29 [in Russian].

    Google Scholar 

  5. N. L. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, Deep Geodynamiocs (GEO, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  6. A. V. Ershov and A. M. Nikishin, “Recent Geodynamics of the Caucasus-Arabia-East Africa,” Geotectonics 38(2), 123–136 (2004).

    Google Scholar 

  7. D. Zhao, F. Piraino, and L. Liu, “Structure and Dynamics of the Mantle beneath Eastern Russia and Adjacent Regions,” Geol. Geofiz. 51(9), 1188–1203 (2010).

    Google Scholar 

  8. D. A. Ivanov, S. N. Bubnov, V. M. Volkova, et al., “Sr and Nd Isotopic Composition of Quaternary Lavas in the Greater Caucasus in Connection with Their Petrogenesis,” Geokhimiya 31(3), 343–353 (1993).

    Google Scholar 

  9. N. A. Imamverdiev, Geochemistry of the Late Cenozoic Volcanic Complexes of the Lesser Cucasus (Nafta-Press, Baku, 2000) [in Russian].

    Google Scholar 

  10. Yu. V. Karyakin, Geodynamics of Formation of Volcanic Complexes of the Lesser Caucasus (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  11. V. I. Kovalenko, V. V. Yarmolyuk, and O. A. Bogatikov, “Geodynamic Setting of Recent Volcanism in North Eurasia,” Geotectonics 43(5), 337–357 (2009).

    Article  Google Scholar 

  12. N. V. Koronovsky and L. I. Demina, “Collision Stage of the Evolution of the Caucasus Sector of the Alpine Foldbelt: Geodynamics and Magmatism,” Geotectonics 33(2), 102–118 (1999).

    Google Scholar 

  13. N. V. Koronovsky and L. I. Demina, “Late Cenozoic Volcanism of the Greater Caucasus,” in The Greater Caucasus in the Alpine Epoch (GEOS, Moscow, 2007), pp. 251–284 [in Russian].

    Google Scholar 

  14. Recent and Contemporary Volcanism of Russia, Ed. by N. P. Laverov (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  15. The Greater Caucasus in the Alpine Epoch, Ed. by Yu. G. Leonov (GEOS, Moscow, 2007) [in Russian].

    Google Scholar 

  16. F. A. Letnikov, “Maturity of Lithospheric Blocks and Endogenic Mineralization,” in Deep Conditions of Endogenic Ore Formation (Nauka, Moscow, 1986), pp. 16–24 [in Russian].

    Google Scholar 

  17. F. A. Letnikov, Petrology and Fluid Regime of the Continental Lithosphere (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  18. F. A. Letnikov, “Ultradeep Fluid Systems of the Earth and Problems of Ore Formation,” Geol. Ore Deposits 43(4), 259–273 (2001).

    Google Scholar 

  19. F. A. Letnikov, “Magma-Forming Fluid Systems of the Continental Liothosphere,” Geol. Geofiz. 44(12), 1262–1269 (2003).

    Google Scholar 

  20. F. A. Letnikov, “The Nature of Deep-Seated Granite-Forming Fluid Systems,” Dokl. Earth Sci. 391(5), 760–762 (2003).

    Google Scholar 

  21. F. A. Letnikov, “Fluid Regime of Endogenic Processes and Ore Formation,” Geol. Geofiz. 47(12), 1296–1307 (2006).

    Google Scholar 

  22. L. I. Lobkovsky and V. D. Kotelkin, “Oceanic History and Asymmetry of the Earth from the Viewpoint of Thermochemical Mantle Convection,” in Tectonics and Geodynamics of Phanerozoic Foldbelts and Platforms (GEOS, Moscow, 2010), Vol. 1, pp. 423–427 [in Russian].

    Google Scholar 

  23. A. S. Monin, Hydrodynamics of Atmosphere, Ocean and Earth’s Subsurface (Gidrometeoizdat, St. Petersburg, 1999) [in Russian].

    Google Scholar 

  24. E. Otani and D. Zhao, “Water in Deep Processes in the Upper Mantle and Transitional Layer: Dehydration of Stagnant Subduction Plates and Its Implication for the Large Mantle Wedge,” Geol. Geofiz. 50(12), 1375–1392 (2009).

    Google Scholar 

  25. B. G. Polyak, I. L. Kamensky, E. M. Prasolov, et al., “Helium Isotopes in Gases of the Northern Caucasus: Implications for Heat and Mass Influx from the Mantle,” Geochem. Int. 36(4), 329–342 (1998).

    Google Scholar 

  26. V. A. Pugin and N. I. Khitarov, Experimental Petrology and Deep Magmatism (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  27. Yu. M. Pushcharovsky, “Three Paradigms of Geology,” Geotektonika 29(1), 4–11 (1995).

    Google Scholar 

  28. Yu. M. Pushcharovsky and D. Yu. Pushcharovsky, Geology of the Earth’s Mantle (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  29. A. E. Ringwood, Composition and Petrology of the Earth’s Mantle (McGraw-Hill, New York, 1975; Nedra, Moscow, 1981).

    Google Scholar 

  30. I. D. Ryabchikov, “Mantle Magmas as a Sensor of the Composition of Deep Geospheres,” Geol. Ore Deposits 47(6), 455–468 (2005).

    Google Scholar 

  31. S. A. Silant’ev and S. Yu. Sokolov, “Effect of Rheological Heterogeneity of the Mantle beneath Axial Zone of Mid-Atlantic Ridge on Isotopic Geochemical Parameters of Magmatism and Distribution of Hydrothermal Ore Occurrences,” in Proceedings of Sci. Conference on New Perspective in Study of Magma and Ore Formation (IGEM RAN, Moscow, 2010), pp. 153–154 [in Russian].

    Google Scholar 

  32. S. Yu. Sokolov, “Structure of the Mantle from Tomographic Data: Transantlatic Near-Latitudinal Section across MAR at the Latitude of the Kane Fracture Zone,” in Proceedings of the 43rd Tectonic Conference on Tectonics and Geodynamics of Phanerozoic Foldbelts (GEOS, Moscow, 2010), Vol. 2, pp. 293–296 [in Russian].

    Google Scholar 

  33. O. G. Sorokhtin, Life of the Earth (Regular and Chaotic Dynamics Sci.-Inform. Center, Moscow-Izhevsk) [in Russian].

  34. O. G. Sorokhtin and S. A. Ushakov, Evolution of the Earth (Moscow State Univ., Moscow, 2002) [in Russian].

    Google Scholar 

  35. V. G. Trifonov, “Age and Mechanism of Recent Mountain Building,” in Proceedings of the 41st Tectonic Conference (GEOS, Moscow, 2008), Vol. 2, pp. 349–353 [in Russian].

    Google Scholar 

  36. V. G. Trifonov, E. V. Artyushkov, A. E. Dodonov, D. M. Bachmanov, A. V. Mikolaichuk, F. A. Vishnyakov, “Pliocene-Quaternary Mountain Building in the Central Tien Shan,” Geol. Geofiz. 49(2), 128–145 (2008).

    Google Scholar 

  37. V. G. Trifonov, O. V. Soboleva, R. V. Trifonov, and G. A. Vostrikov, Contemporary Geodynamics of the Alpine-Himalayan Collision Belt (GEOS, Moscow, 2002) [in Russian].

    Google Scholar 

  38. V. P. Trubitsin, “The Tectonics of Floating Continents,” Herald Russ. Acad. Sci. 75(1), 7–18 (2005).

    Google Scholar 

  39. S. A. Fedotov, “Deep Structure, Properties of the Upper Mantle and Volcanic Activity of the Kurile-Kamchatka Island Arc from Seismological Data as of 1964,” in Volcanism and Deep Structure of the Earth (Nauka, Moscow, 1966), pp. 8–25 [in Russian].

    Google Scholar 

  40. V. V. Yarmolyuk, O. A. Bogatikov, and V. I. Kovalenko, “Late Cenozoic Transcontinental Structures and Magmatism of the Earth’s Euro-African Segment and Geodynamics of Its Formation,” Dokl. Earth Sci. 395(2), 183–186 (2004).

    Google Scholar 

  41. R. Altherr, F. Henjes-Kunst, and A. Baumann, “Asthenosphere Versus Lithosphere as Possible Sources for Basaltic Magmas Erupted during Formation of the Red Sea: Constraints from Sr, Pb and Nd Isotopes,” Earth Planet. Sci. Lett. 96, 269–286 (1990).

    Article  Google Scholar 

  42. D. L. Anderson, “Speculations on the Nature and Cause of Mantle Heterogeneity,” Tectonophysics 416, 7–22 (2006).

    Article  Google Scholar 

  43. J. A. Baker, M. A. Mensies, M. F. Thirlwall, and C. G. MacPherson, “Petrogenesis of Quaternary Intraplate Volcanism, Sana’a, Yemen: Implications for Plume-Lithosphere Interaction and Polybaric Melt Hybridization,” J. Petrol. 36, 1359–1390 (1997).

    Article  Google Scholar 

  44. T. W. Becker and L. Boschi, “A Comparison of Tomographic and Geodynamics Mantel Models,” G-Cubed Geochem. Geophys. Geosystems 3, 2002, 2001GC000168, http://www.geophysics.harvard.edu/geodyn/tomography/

    Google Scholar 

  45. H. Bertrand, G. Chazot, J. Blichert-Toft, and S. Thoral, “Implications of Widespread High-Volcanism on the Arabian Plate for Afar Mantle Plume and Lithosphere Composition,” Chem. Geol. 198, 47–61 (2003).

    Article  Google Scholar 

  46. V. E. Camp and M. J. Roobol, “Upwelling Asthenosphere Beneath Western Arabia and Its Regional Implication,” J. Geophys. Res. 97, 15255–15271 (1992).

    Article  Google Scholar 

  47. K. C. Creager and T. H. Jordan, “Slab Penetration into the Lower Mantle,” J. Geophys. Res. 89(B5), 3031–3049 (1984).

    Article  Google Scholar 

  48. S. P. Grand, R. D. van der Hilst, and S. Widiyantoro, “Global Seismic Tomography: A Snapshot of Convection in the Earth,” GSA Today 7, 1–7 (1997).

    Google Scholar 

  49. J. Huang and D. Zhao, “High-Resolution Mantle Tomography of China and Surrounding Regions,” J. Geophys. Res. 111(B09305), 1–21 (2006).

    Google Scholar 

  50. S. D. Jacobsen, S. Demouchy, J. D. Frost, T. B. Ballaran, J. Kung, “A Systematic Study of OH in Hydrous Wadsleyite from Polarized FTIR Spectroscopy and Single-Crystal X-Ray Diffraction: Oxygen Sites for Hydrogen Storage in Earth’s Interior,” Am. Mineral. 90(1), 67–70 (2005).

    Article  Google Scholar 

  51. A. Kelbert, A. Schultz, and G. Egbert, “Global Electromagnetic Induction Constraints on Transition-Zone Water Content Variations,” Nature 469, 1003–1006 (2009).

    Article  Google Scholar 

  52. J. F. Lawrence and M. E. Wysession, “Seismic Evidence for Subduction-Transported Water in the Lower Mantle,” in Earth Deepwater Cycle, Ed. by S. V. Jacobsen and S. van der Lee (Geophys. Monograph Series, 2006), Vol. 168, pp. 251–261.

  53. M. Lustrino and E. Sharkov, “Neogene Volcanic Activity of Western Syria and Its Relationship with Arabian Plate Kinematics,” J. Geodynamics 42, 115–139 (2006).

    Article  Google Scholar 

  54. S. Y. O’Reilly and W. L. Griffin, “Imaging Global Chemical and Thermal Heterogeneity in the Subcontinental Lithospheric Mantle with Garnet and Xenoliths: Geophysical Implications,” Tectonophysics 416, 289–309 (2006).

    Article  Google Scholar 

  55. A. Robertson, Ü. C. Unlügenç, N. Inan, and K. Taśli, “The Misis-Andirin Complex: AMid-Tertiary Melange Related to Late-Stage Subduction of the Southern Neotethys in S. Turkey,” J. Asian Earth Sci. 22(5), 413–453 (2004).

    Article  Google Scholar 

  56. A. Segev, “Magmatic Rocks,” in Geological Framework of the Levant, Ed. by V. A. Krasheninnikov et al. (Historical Production-Hall, Jerusalem, 2005), Vol. 2, Pt. 4, pp. 553–576.

    Google Scholar 

  57. J. R. Smyth, “A Crystallographic Model for Hydrous Wadsleyite: An Ocean in the Earth’s Interior?,” Am. Mineral. 79, 1021–1025 (1994).

    Google Scholar 

  58. M. Stein and A. W. Hofmann, “Fossil Plume Head beneath the Arabian Lithosphere,” Earth Planet. Sci. Lett. 114, 193–209 (1992).

    Article  Google Scholar 

  59. H. Thybo, “The Heterogeneous Upper Mantle Low Velocity Zone,” Tectonophysics 416, 53–79 (2006).

    Article  Google Scholar 

  60. V. G. Trifonov, A. E. Dodonov, E. V. Sharkov, D. I. Golovin, I. V. Chernyshev, V. A. Lebedev, T. P. Ivanova, D. M. Bachmanov, M. Rukieh, O. Ammar, H. Minini, A.-M. Al Kafri, and O. Ali, “New Data on the Late Cenozoic Basaltic Volcanism in Syria, Applied to Its Origin,” J. Volcanol. Geotherm. Res. 199, 177–192 (2011).

    Article  Google Scholar 

  61. R. D. van der Hilst, S. Widiyantoro, and E. R. Engdahl, “Evidence of Deep Mantle Circulation from Global Tomography,” Nature 386, 578–584 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Sokolov.

Additional information

Original Russian Text © S.Yu. Sokolov, V.G. Trifonov, 2012, published in Geotektonika, 2012, Vol. 46, No. 3, pp. 3–18.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, S.Y., Trifonov, V.G. Role of the asthenosphere in transfer and deformation of the lithosphere: The Ethiopian-Afar superplume and the Alpine-Himalayan Belt. Geotecton. 46, 171–184 (2012). https://doi.org/10.1134/S0016852112030053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852112030053

Keywords

Navigation