Abstract
The Mesozoic and Cenozoic seamounts and submarine ridges in the east of the South Atlantic are considered and compared with the coeval tectonomagmatic structures of West Africa. The conclusion is drawn that within-plate magmatism of the Atlantic is a waning process related to the ascent of several large plumes beneath West Africa beginning from the Triassic and subsequent lateral spreading of their material. It is shown that the heated plume material can spread beneath the lithosphere for a great distance, mixing in various proportions with asthenospheric matter, forming melts variable in geochemistry and isotopic characteristics. Cooling of the material takes many tens of years with retention of small magma sources episodically supplying melts to the surface. Localization of permeable zones in the lithosphere, along which the melts ascend, is determined by global stress fields responsible for the formation of long-lived linear tectonic elements on continents, inherited by young oceanic tectonic lines.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
A. A. Peyve and S. G. Skolotnev, “Alkali Volcanism of the Bathymetrists Seamounts Chain (Central Atlantic): Description and Comparison,” Dokl. Akad. Nauk 425(1), 76–82 (2009) [Dokl. Earth Sci. 425 (2), 243–248 (2009)].
Yu. M. Pushcharovsky, “Tectonic Phenomena of Oceans,” in Fundanebtal Problems of General Tectonics (Nauchnyi Mir, Moscow, 2001), pp. 174–230 [in Russian].
Yu. M. Pushcharovsky, “Tectonic Provinces of the Atlantic Ocean,” Geotektonika 43(3), 3–13 (2009) [Geotectonics 43 (3), 185–193 (2009)].
Yu. M. Pushcharovsky, A. O. Mazarovich, and S. G. Skolotnev, “Neotectonics of the Ocean Floor of the Central Atlantic,” Geotektonika 39(2), 3–16 (2005) [Geotectonics 39 (2), 99–111 (2005)].
S. G. Skolotnev, A. A. Peyve, and B. V. Belyatsky, “Geochemical and Isotopic Features of Basalts in the Axial Mid-Atlantic Ridge near the Martin Vaz Fracture Zone, South Atlantic (19–20° S),” Dokl. Akad. Nauk 407(6), 798–805 (2006) [Dokl. Earth Sci. 407A (3), 410–407 (2006)].
S. G. Skolotnev, A. A. Peyve, N. N. Turko, et al., “New Data on the Geological Structure of the Junction between the Cape Verde Seamount and the Cape Verde Basin, Central Atlantic,” Dokl. Akad. Nauk 407(2), 224–229 (2006) [Dokl. Earth Sci. 407 (2), 220–224 (2006)].
S. G. Skolotnev, A. A. Peyve, N. N. Turko, et al., “Accretion of Crust in the Axial Zone of the Mid-Atlantic Ridge South of the Martin Vaz Fracture Zone, South Atlantic,” Geotektonika 43(5), 25–49 (2009) [Geotectonics 43 (5), 358–378 (2009)].
S. G. Skolotnev, N. N. Turko, S. Yu. Sokolov, et al., “New Data on the Geological Structure of the Junction of the Cape Verde Plateau, Cape Verde Abyssal Plain, and Bathymetrists Seamounts (Central Atlantic Ocean),” Dokl. Akad. Nauk 416(4), 525–529 (2007) [Dokl. Earth Sci. 416 (7), 1037–1041 (2007)].
G. S. Kharin, “Igneous Rocks of the Submarine Sierra Leone Rise, Equatorial Atlantic,” Okeanologiya 28(1), 82–88 (1988).
C. J. Ballentine, D. Lee, and A. N. Halliday, “Hafnium Isotopic Studies of the Cameroon Line and New HIMU Paradoxes,” Chem. Geol. 139, 111–124 (1997).
K. Bauer, S. Neben, B. Schreckenberger, et al., “Deep Structure of the Namibia Continental Margin as Derived from Integrated Geophysical Studies,” J. Geo-phys. Res. 105(B11), 25829–25853 (2000).
H. Bertrand, G. Feraud, and J. Mascle, “Alkaline Volcano of Paleocene Age on the Southern Guinean Margin: Mapping, Petrology, 40Ar/39Ar Laser Probe Dating, and Implications for the Evolution of the Eastern Equatorial Atlantic,” Mar. Geol. 114, 251–262 (1993).
J. Clemson, J. Cartwright, and J. Booth, “Structural Segmentation and the Influence of Basement Structure on the Namibian Passive Margin,” J. Geol. Soc. London 154, 477–482 (1997).
B. Deruelle, I. Ngounouno, and D. Demaiffe, “The Cameroon Hot Line (CHL): a Unique Example of Active Alkaline Intraplate Structure in Both Oceanic and Continental Lithospheres,” C.R. Geoscience 339, 589–600 (2007).
J. Dougal, N. Mountney, F. Holzforster, and H. Stollhofen, “Internal Stratigraphic Relationships in the Etendeka Group in the Huab Basin, NW Namibia: Understanding the Onset of Flood Volcanism,” J. Geodynamics 28, 393–418 (1999).
D. Dragoi-Stavar and D. Hall, “Gravity Modeling of the Ocean Continent Transition Along the South Atlantic Margins,” J. Geophys. Res. 114(B09401), 1–15 (2009).
G. M. Elliott, C. Berndt, and L. M. Parson, “The SW African Volcanic Rifted Margin and the Initiation of the Walvis Ridge, South Atlantic,” Mar. Geophys. Res. 30, 207–214 (2009).
K. O. Emery, E. Uchupi, E. Phillips, et al., “Continental Margin Off Western Africa: Angola to Sierra Leone,” Amer. Assoc. Petrol. Geol. Bull. 59(12), 2209–2265 (1975).
M. Ernesto, L. S. Marques, E. M. Piccirillo, et al., “Parana Magmatic Province-Tristan Da Cunha Plume System: Fixed Versus Mobile Plume, Petrogenetic Considerations and Alternative Heat Sources,” J. Volcanol. Geotherm. Res. 118(1/2), 15–36 (2002).
A. Ewart, J. S. Marsh, S. C. Milner, et al., “Petrology and Geochemistry of Early Cretaceous Bimodal Continental Flood Volcanism of the NW Etendeka, Namibia. Part 1: Introduction, Mafic Lavas and Re-Evaluation of Mantle Source Components,” J. Petrol. 45(1), 59–105 (2004).
A. Ewart, S. C. Milner, R. A. Armstrong, and A. R. Duncan, “Etendeka Volcanism of the Goboboseb Mountains and Messum Igneous Complex, Namibia. Part I: Geochemical Evidence of Early Cretaceous Tristan Plume Melts and the Role of Crustal Contamination in the Parana-Etendeka CFB,” J. Petrol. 39(2), 191–225 (1998).
J. G. Fitton, “The Cameroon Line, West Africa: a Comparison Between Oceanic and Continental Alkaline Volcanism,” Geol. Soc. London Spec. Publ. 30, 273–291 (1987).
T. P. Gladczenko, K. Hinz, O. Eldholm, et al., “South Atlantic Volcanic Margins,” J. Geol. Soc. London 154, 465–470 (1997).
J. Goslin and J. C. Sibvet, “Geophysical Study of the Easternmost Walvis Ridge, South Atlantic: Deep Structure,” Geol. Soc. Amer. Bull. 86, 1713–1724 (1975).
E. J. W. Jones, D. A. Goddard, J. G. Mitchell, and F. T. Banner, “Lamprophyric Volcanism of Cenozoic Age on the Sierra Leone Rise: Implications for Regional Tectonics and the Stratigraphic Time Scale,” Mar. Geol. 99, 19–28 (1991).
J. B. Kamdem, M. Kraml, J. Keller, and F. Henjes-Kunst, “Cameroon Line Magmatism: Conventional K/Ar and Single-Crystal Laser 40Ar/39Ar Ages of Rocks and Minerals from the Hossere Nigo Anorogenic Complex, Cameroon,” J. African Earth Sci. 35, 99–105 (2002).
D. Lee, A. N. Halliday, J. G. Fitton, and P. Giampero, “Isotopic Variations with Distance and Time in the Volcanic Islands of the Cameroon Line: Evidence for a Mantle Plume Origin,” Earth Planet. Sci. Lett. 123, 119–138 (1994).
J. S. Marsh, A. K. Wart, S. C. Milner, A. R. Duncan, and R.M. Miller, “The Etendeka Igneous Province: Magma Types and Their Stratigraphic Distribution with Implications for the Evolution of the Parana-Etendeka Flood Basalt,” Bull. Volcanol. 62, 464–486 (2001).
J. S. Marsh and M. J. Watkeys, “Karoo and Etendeka Flood Basalt Provinces, Southern Africa, and the Tectonic Development of Their Adjacent Continental Margins”, in Proceedings of the International Lithosphere Program Workshop on Volcanic Margins (Potsdam, 1997), pp. 30–32.
A. Marzoli, E. M. Piccirillo, P. R. Renne, et al., “The Cameroon Volcanic Line Revisited: Petrogenesis of Continental Basaltic Magmas from Lithospheric and Asthenospheric Mantle Sources,” J. Petrol. 41(1), 87–109 (2000).
J. Mascle, M. Marinho, and J. Wannesson, “The Structure of the Guinean Continental Margin: Implications for the Connection between the Central and the South Atlantic Oceans,” Geol. Rundsch. 75, 57–70 (1986).
J. B. Meyers, B. R. Rosendahl, C. G. A. Harrison, and Z. Ding, “Deep-Imaging Seismic and Gravity Results from the Offshore Cameroon Volcanic Line, and Speculation of African Hotlines,” Tectonophysics 284, 31–63 (1998).
S. C. Milner, A. P. Le Roex, and J. M. O’Connor, “Age of Mesozoic Igneous Rocks in Northwestern Namibia and Their Relationship to Continental Breakup,” J. Geol. Soc. London 152, 97–104 (1995).
T. C. Moore, P. D. Rabinowitz, A. Boersma, et al., “The Walvis Ridge Transect, Deep Sea Drilling Project Leg 74: the Geologic Evolution of an Oceanic Plateau in the South Atlantic Ocean,” Geol. Soc. Amer. Bull. 94, 907–925 (1983).
V. Ngako, E. Njonfang, F. T. Aka, et al., “The North-South Paleozoic to Quaternary Trend of Alkaline Magmatism from Niger-Nigeria to Cameroon: Complex Interaction between Hotspots and Precambrian Faults,” J. African Earth Sci. 45, 241–256 (2006).
J. M. O’Connor and R. A. Duncan, “Evolution of the Walvis Ridge-Rio Grande Rise Hot Spot System: Implications for African and South American Plate Motions over Plumes,” J. Geophys. Res. 95, 17475–17502 (1990).
J. M. O’Connor, and A.P. Le Roex, “South Atlantic Hotspot-Plume Systems: 1. Distribution of Volcanism in Time and Space,” Earth Planet. Sci. Lett. 113, 343–364 (1992).
J. M. O’Connor, P. Stoffers, P. Van den Bogaard, and M. McWilliams, “First Seamount Age Evidence for Significantly Slower African Plate Motion Since 19 to 30 Ma,” Earth Planet. Sci. Lett. 171, 575–589 (1999).
C. O. Ofoegbu and P. Harcourt, “A Model for the Tectonic Evolution of the Benue Trough of Nigeria,” Geol. Rundsch. 73(3), 1007–1018 (1984).
Petrological Database of the Ocean Floor. http://www.petdb.org/
A. A. Peyve, “Alkali Volcanism of the Carter Seamount (Central Atlantic),” Geochim. Cosmochim. Acta 73(13), 1023 (2009).
P. D. Rabinowitz and J. LaBrecque, “The Mesozoic South Atlantic Ocean and Evolution of Its Continental Margins,” J. Geophys. Res. 84, 5973–6002 (1979).
M. Regelous, Y. Niu, W. Abouchami, and P. R. Castillo, “Shallow Origin for South Atlantic Dupal Anomaly from Lower Continental Crust: Geochemical Evidence from the Mid-Atlantic Ridge at 26° S,” Lithos 112, 57–72 (2009).
P. R. Renne, J. M. Glen, S. C. Milner, and A. R. Duncan, “Age of Etendeka Flood Volcanism and Associated Intrusions in Southwestern Africa,” Geology 24(7), 659–662 (1996).
S. H. Richardson, A. J. Erlank, A. R. Duncan, and D. L. Reid, “Correlated Nd, Sr and Pb Isotope Variation in Walvis Ridge Basalts and Implications for the Evolution of Their Mantle Source,” Earth Planet. Sci. Lett. 59, 327–342 (1982).
M. Strugale, S. P. Rostirolla, F. Mancini, et al., “Structural Framework and Mesozoic-Cenozoic Evolution of Ponta Grossa Arch, Parana Basin, Southern Brazil,” J. South Amer. Earth Sci. 24, 203–227 (2007).
R. N. Thompson, S. A. Gibson, A. P. Dickin, and P. M. Smith, “Early Cretaceous Basalt and Picrite Dykes of the Southern Etendeka Region, NW Namibia: Windows into the Role of the Tristan Mantle Plume in Parana-Etendeka Magmatism,” J. Petrol. 42(11), 2049–2081 (2001).
R. N. Thompson, A. J. V. Riches, P. M. Antoshechkina, et al., “Origin of CFB Magmatism: Multi-Tiered Intracrustal Picrite-Rhyolite Magmatic Plumbing at Spitzkoppe, Western Namibia, during Early Cretaceous Etendeka Magmatism,” J. Petrol. 48(6), 1119–1154 (2007).
R. B. Trumbull, T. Vietor, K. Hahne, et al., “Aeromagnetic Mapping and Reconnaissance Geochemistry of the Early Cretaceous Henties Bay-Outjo Mafic Dike Swarm, Etendeka Igneous Province, Namibia,” J. African Earth Sci. 40, 17–29 (2004).
R. B. Trumbull, D. L. Reid, C. De Beer, et al., “Magmatism and Continental Breakup at the West Margin of Southern Africa: a Geochemical Comparison of Dolerite Dikes from Northwestern Namibia and the Western Cape,” South African J. Geol. 110, 477–502 (2007).
S. Turner, M. Regelous, S. Kelley, et al., “Magmatism and Continental Break-Up in the South Atlantic: High Precision 40Ar/39Ar Geochronology,” Earth Planet. Sci. Lett. 121, 333–348 (1994).
K. Whitehead, A. P. Le Roex, C. Class, and D. R. Bell, “Composition and Cretaceous Thermal Structure of the Upper Mantle Beneath the Damara Mobile Belt: Evidence from Nephelinite-Hosted Peridotite Xenoliths, Swakopmund, Namibia,” J. Geol. Soc. London 159, 307–321 (2002).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.A. Peyve, 2011, published in Geotektonika, 2011, Vol. 45, No. 3, pp. 31–47.
Rights and permissions
About this article
Cite this article
Peyve, A.A. Seamounts in the east of South Atlantic: Origin and correlation with Mesozoic-Cenozoic magmatic structures of West Africa. Geotecton. 45, 195–209 (2011). https://doi.org/10.1134/S0016852111030058
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0016852111030058