Skip to main content
Log in

Seamounts in the east of South Atlantic: Origin and correlation with Mesozoic-Cenozoic magmatic structures of West Africa

  • Published:
Geotectonics Aims and scope

Abstract

The Mesozoic and Cenozoic seamounts and submarine ridges in the east of the South Atlantic are considered and compared with the coeval tectonomagmatic structures of West Africa. The conclusion is drawn that within-plate magmatism of the Atlantic is a waning process related to the ascent of several large plumes beneath West Africa beginning from the Triassic and subsequent lateral spreading of their material. It is shown that the heated plume material can spread beneath the lithosphere for a great distance, mixing in various proportions with asthenospheric matter, forming melts variable in geochemistry and isotopic characteristics. Cooling of the material takes many tens of years with retention of small magma sources episodically supplying melts to the surface. Localization of permeable zones in the lithosphere, along which the melts ascend, is determined by global stress fields responsible for the formation of long-lived linear tectonic elements on continents, inherited by young oceanic tectonic lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Peyve and S. G. Skolotnev, “Alkali Volcanism of the Bathymetrists Seamounts Chain (Central Atlantic): Description and Comparison,” Dokl. Akad. Nauk 425(1), 76–82 (2009) [Dokl. Earth Sci. 425 (2), 243–248 (2009)].

    Google Scholar 

  2. Yu. M. Pushcharovsky, “Tectonic Phenomena of Oceans,” in Fundanebtal Problems of General Tectonics (Nauchnyi Mir, Moscow, 2001), pp. 174–230 [in Russian].

    Google Scholar 

  3. Yu. M. Pushcharovsky, “Tectonic Provinces of the Atlantic Ocean,” Geotektonika 43(3), 3–13 (2009) [Geotectonics 43 (3), 185–193 (2009)].

    Google Scholar 

  4. Yu. M. Pushcharovsky, A. O. Mazarovich, and S. G. Skolotnev, “Neotectonics of the Ocean Floor of the Central Atlantic,” Geotektonika 39(2), 3–16 (2005) [Geotectonics 39 (2), 99–111 (2005)].

    Google Scholar 

  5. S. G. Skolotnev, A. A. Peyve, and B. V. Belyatsky, “Geochemical and Isotopic Features of Basalts in the Axial Mid-Atlantic Ridge near the Martin Vaz Fracture Zone, South Atlantic (19–20° S),” Dokl. Akad. Nauk 407(6), 798–805 (2006) [Dokl. Earth Sci. 407A (3), 410–407 (2006)].

    Google Scholar 

  6. S. G. Skolotnev, A. A. Peyve, N. N. Turko, et al., “New Data on the Geological Structure of the Junction between the Cape Verde Seamount and the Cape Verde Basin, Central Atlantic,” Dokl. Akad. Nauk 407(2), 224–229 (2006) [Dokl. Earth Sci. 407 (2), 220–224 (2006)].

    Google Scholar 

  7. S. G. Skolotnev, A. A. Peyve, N. N. Turko, et al., “Accretion of Crust in the Axial Zone of the Mid-Atlantic Ridge South of the Martin Vaz Fracture Zone, South Atlantic,” Geotektonika 43(5), 25–49 (2009) [Geotectonics 43 (5), 358–378 (2009)].

    Google Scholar 

  8. S. G. Skolotnev, N. N. Turko, S. Yu. Sokolov, et al., “New Data on the Geological Structure of the Junction of the Cape Verde Plateau, Cape Verde Abyssal Plain, and Bathymetrists Seamounts (Central Atlantic Ocean),” Dokl. Akad. Nauk 416(4), 525–529 (2007) [Dokl. Earth Sci. 416 (7), 1037–1041 (2007)].

    Google Scholar 

  9. G. S. Kharin, “Igneous Rocks of the Submarine Sierra Leone Rise, Equatorial Atlantic,” Okeanologiya 28(1), 82–88 (1988).

    Google Scholar 

  10. C. J. Ballentine, D. Lee, and A. N. Halliday, “Hafnium Isotopic Studies of the Cameroon Line and New HIMU Paradoxes,” Chem. Geol. 139, 111–124 (1997).

    Article  Google Scholar 

  11. K. Bauer, S. Neben, B. Schreckenberger, et al., “Deep Structure of the Namibia Continental Margin as Derived from Integrated Geophysical Studies,” J. Geo-phys. Res. 105(B11), 25829–25853 (2000).

    Article  Google Scholar 

  12. H. Bertrand, G. Feraud, and J. Mascle, “Alkaline Volcano of Paleocene Age on the Southern Guinean Margin: Mapping, Petrology, 40Ar/39Ar Laser Probe Dating, and Implications for the Evolution of the Eastern Equatorial Atlantic,” Mar. Geol. 114, 251–262 (1993).

    Article  Google Scholar 

  13. J. Clemson, J. Cartwright, and J. Booth, “Structural Segmentation and the Influence of Basement Structure on the Namibian Passive Margin,” J. Geol. Soc. London 154, 477–482 (1997).

    Article  Google Scholar 

  14. B. Deruelle, I. Ngounouno, and D. Demaiffe, “The Cameroon Hot Line (CHL): a Unique Example of Active Alkaline Intraplate Structure in Both Oceanic and Continental Lithospheres,” C.R. Geoscience 339, 589–600 (2007).

    Article  Google Scholar 

  15. J. Dougal, N. Mountney, F. Holzforster, and H. Stollhofen, “Internal Stratigraphic Relationships in the Etendeka Group in the Huab Basin, NW Namibia: Understanding the Onset of Flood Volcanism,” J. Geodynamics 28, 393–418 (1999).

    Article  Google Scholar 

  16. D. Dragoi-Stavar and D. Hall, “Gravity Modeling of the Ocean Continent Transition Along the South Atlantic Margins,” J. Geophys. Res. 114(B09401), 1–15 (2009).

    Google Scholar 

  17. G. M. Elliott, C. Berndt, and L. M. Parson, “The SW African Volcanic Rifted Margin and the Initiation of the Walvis Ridge, South Atlantic,” Mar. Geophys. Res. 30, 207–214 (2009).

    Article  Google Scholar 

  18. K. O. Emery, E. Uchupi, E. Phillips, et al., “Continental Margin Off Western Africa: Angola to Sierra Leone,” Amer. Assoc. Petrol. Geol. Bull. 59(12), 2209–2265 (1975).

    Google Scholar 

  19. M. Ernesto, L. S. Marques, E. M. Piccirillo, et al., “Parana Magmatic Province-Tristan Da Cunha Plume System: Fixed Versus Mobile Plume, Petrogenetic Considerations and Alternative Heat Sources,” J. Volcanol. Geotherm. Res. 118(1/2), 15–36 (2002).

    Article  Google Scholar 

  20. A. Ewart, J. S. Marsh, S. C. Milner, et al., “Petrology and Geochemistry of Early Cretaceous Bimodal Continental Flood Volcanism of the NW Etendeka, Namibia. Part 1: Introduction, Mafic Lavas and Re-Evaluation of Mantle Source Components,” J. Petrol. 45(1), 59–105 (2004).

    Article  Google Scholar 

  21. A. Ewart, S. C. Milner, R. A. Armstrong, and A. R. Duncan, “Etendeka Volcanism of the Goboboseb Mountains and Messum Igneous Complex, Namibia. Part I: Geochemical Evidence of Early Cretaceous Tristan Plume Melts and the Role of Crustal Contamination in the Parana-Etendeka CFB,” J. Petrol. 39(2), 191–225 (1998).

    Article  Google Scholar 

  22. J. G. Fitton, “The Cameroon Line, West Africa: a Comparison Between Oceanic and Continental Alkaline Volcanism,” Geol. Soc. London Spec. Publ. 30, 273–291 (1987).

    Article  Google Scholar 

  23. T. P. Gladczenko, K. Hinz, O. Eldholm, et al., “South Atlantic Volcanic Margins,” J. Geol. Soc. London 154, 465–470 (1997).

    Article  Google Scholar 

  24. J. Goslin and J. C. Sibvet, “Geophysical Study of the Easternmost Walvis Ridge, South Atlantic: Deep Structure,” Geol. Soc. Amer. Bull. 86, 1713–1724 (1975).

    Article  Google Scholar 

  25. E. J. W. Jones, D. A. Goddard, J. G. Mitchell, and F. T. Banner, “Lamprophyric Volcanism of Cenozoic Age on the Sierra Leone Rise: Implications for Regional Tectonics and the Stratigraphic Time Scale,” Mar. Geol. 99, 19–28 (1991).

    Article  Google Scholar 

  26. J. B. Kamdem, M. Kraml, J. Keller, and F. Henjes-Kunst, “Cameroon Line Magmatism: Conventional K/Ar and Single-Crystal Laser 40Ar/39Ar Ages of Rocks and Minerals from the Hossere Nigo Anorogenic Complex, Cameroon,” J. African Earth Sci. 35, 99–105 (2002).

    Article  Google Scholar 

  27. D. Lee, A. N. Halliday, J. G. Fitton, and P. Giampero, “Isotopic Variations with Distance and Time in the Volcanic Islands of the Cameroon Line: Evidence for a Mantle Plume Origin,” Earth Planet. Sci. Lett. 123, 119–138 (1994).

    Article  Google Scholar 

  28. J. S. Marsh, A. K. Wart, S. C. Milner, A. R. Duncan, and R.M. Miller, “The Etendeka Igneous Province: Magma Types and Their Stratigraphic Distribution with Implications for the Evolution of the Parana-Etendeka Flood Basalt,” Bull. Volcanol. 62, 464–486 (2001).

    Article  Google Scholar 

  29. J. S. Marsh and M. J. Watkeys, “Karoo and Etendeka Flood Basalt Provinces, Southern Africa, and the Tectonic Development of Their Adjacent Continental Margins”, in Proceedings of the International Lithosphere Program Workshop on Volcanic Margins (Potsdam, 1997), pp. 30–32.

  30. A. Marzoli, E. M. Piccirillo, P. R. Renne, et al., “The Cameroon Volcanic Line Revisited: Petrogenesis of Continental Basaltic Magmas from Lithospheric and Asthenospheric Mantle Sources,” J. Petrol. 41(1), 87–109 (2000).

    Article  Google Scholar 

  31. J. Mascle, M. Marinho, and J. Wannesson, “The Structure of the Guinean Continental Margin: Implications for the Connection between the Central and the South Atlantic Oceans,” Geol. Rundsch. 75, 57–70 (1986).

    Article  Google Scholar 

  32. J. B. Meyers, B. R. Rosendahl, C. G. A. Harrison, and Z. Ding, “Deep-Imaging Seismic and Gravity Results from the Offshore Cameroon Volcanic Line, and Speculation of African Hotlines,” Tectonophysics 284, 31–63 (1998).

    Article  Google Scholar 

  33. S. C. Milner, A. P. Le Roex, and J. M. O’Connor, “Age of Mesozoic Igneous Rocks in Northwestern Namibia and Their Relationship to Continental Breakup,” J. Geol. Soc. London 152, 97–104 (1995).

    Article  Google Scholar 

  34. T. C. Moore, P. D. Rabinowitz, A. Boersma, et al., “The Walvis Ridge Transect, Deep Sea Drilling Project Leg 74: the Geologic Evolution of an Oceanic Plateau in the South Atlantic Ocean,” Geol. Soc. Amer. Bull. 94, 907–925 (1983).

    Article  Google Scholar 

  35. V. Ngako, E. Njonfang, F. T. Aka, et al., “The North-South Paleozoic to Quaternary Trend of Alkaline Magmatism from Niger-Nigeria to Cameroon: Complex Interaction between Hotspots and Precambrian Faults,” J. African Earth Sci. 45, 241–256 (2006).

    Article  Google Scholar 

  36. J. M. O’Connor and R. A. Duncan, “Evolution of the Walvis Ridge-Rio Grande Rise Hot Spot System: Implications for African and South American Plate Motions over Plumes,” J. Geophys. Res. 95, 17475–17502 (1990).

    Article  Google Scholar 

  37. J. M. O’Connor, and A.P. Le Roex, “South Atlantic Hotspot-Plume Systems: 1. Distribution of Volcanism in Time and Space,” Earth Planet. Sci. Lett. 113, 343–364 (1992).

    Article  Google Scholar 

  38. J. M. O’Connor, P. Stoffers, P. Van den Bogaard, and M. McWilliams, “First Seamount Age Evidence for Significantly Slower African Plate Motion Since 19 to 30 Ma,” Earth Planet. Sci. Lett. 171, 575–589 (1999).

    Article  Google Scholar 

  39. C. O. Ofoegbu and P. Harcourt, “A Model for the Tectonic Evolution of the Benue Trough of Nigeria,” Geol. Rundsch. 73(3), 1007–1018 (1984).

    Article  Google Scholar 

  40. Petrological Database of the Ocean Floor. http://www.petdb.org/

  41. A. A. Peyve, “Alkali Volcanism of the Carter Seamount (Central Atlantic),” Geochim. Cosmochim. Acta 73(13), 1023 (2009).

    Google Scholar 

  42. P. D. Rabinowitz and J. LaBrecque, “The Mesozoic South Atlantic Ocean and Evolution of Its Continental Margins,” J. Geophys. Res. 84, 5973–6002 (1979).

    Article  Google Scholar 

  43. M. Regelous, Y. Niu, W. Abouchami, and P. R. Castillo, “Shallow Origin for South Atlantic Dupal Anomaly from Lower Continental Crust: Geochemical Evidence from the Mid-Atlantic Ridge at 26° S,” Lithos 112, 57–72 (2009).

    Article  Google Scholar 

  44. P. R. Renne, J. M. Glen, S. C. Milner, and A. R. Duncan, “Age of Etendeka Flood Volcanism and Associated Intrusions in Southwestern Africa,” Geology 24(7), 659–662 (1996).

    Article  Google Scholar 

  45. S. H. Richardson, A. J. Erlank, A. R. Duncan, and D. L. Reid, “Correlated Nd, Sr and Pb Isotope Variation in Walvis Ridge Basalts and Implications for the Evolution of Their Mantle Source,” Earth Planet. Sci. Lett. 59, 327–342 (1982).

    Article  Google Scholar 

  46. M. Strugale, S. P. Rostirolla, F. Mancini, et al., “Structural Framework and Mesozoic-Cenozoic Evolution of Ponta Grossa Arch, Parana Basin, Southern Brazil,” J. South Amer. Earth Sci. 24, 203–227 (2007).

    Article  Google Scholar 

  47. R. N. Thompson, S. A. Gibson, A. P. Dickin, and P. M. Smith, “Early Cretaceous Basalt and Picrite Dykes of the Southern Etendeka Region, NW Namibia: Windows into the Role of the Tristan Mantle Plume in Parana-Etendeka Magmatism,” J. Petrol. 42(11), 2049–2081 (2001).

    Article  Google Scholar 

  48. R. N. Thompson, A. J. V. Riches, P. M. Antoshechkina, et al., “Origin of CFB Magmatism: Multi-Tiered Intracrustal Picrite-Rhyolite Magmatic Plumbing at Spitzkoppe, Western Namibia, during Early Cretaceous Etendeka Magmatism,” J. Petrol. 48(6), 1119–1154 (2007).

    Article  Google Scholar 

  49. R. B. Trumbull, T. Vietor, K. Hahne, et al., “Aeromagnetic Mapping and Reconnaissance Geochemistry of the Early Cretaceous Henties Bay-Outjo Mafic Dike Swarm, Etendeka Igneous Province, Namibia,” J. African Earth Sci. 40, 17–29 (2004).

    Article  Google Scholar 

  50. R. B. Trumbull, D. L. Reid, C. De Beer, et al., “Magmatism and Continental Breakup at the West Margin of Southern Africa: a Geochemical Comparison of Dolerite Dikes from Northwestern Namibia and the Western Cape,” South African J. Geol. 110, 477–502 (2007).

    Article  Google Scholar 

  51. S. Turner, M. Regelous, S. Kelley, et al., “Magmatism and Continental Break-Up in the South Atlantic: High Precision 40Ar/39Ar Geochronology,” Earth Planet. Sci. Lett. 121, 333–348 (1994).

    Article  Google Scholar 

  52. K. Whitehead, A. P. Le Roex, C. Class, and D. R. Bell, “Composition and Cretaceous Thermal Structure of the Upper Mantle Beneath the Damara Mobile Belt: Evidence from Nephelinite-Hosted Peridotite Xenoliths, Swakopmund, Namibia,” J. Geol. Soc. London 159, 307–321 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Peyve.

Additional information

Original Russian Text © A.A. Peyve, 2011, published in Geotektonika, 2011, Vol. 45, No. 3, pp. 31–47.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyve, A.A. Seamounts in the east of South Atlantic: Origin and correlation with Mesozoic-Cenozoic magmatic structures of West Africa. Geotecton. 45, 195–209 (2011). https://doi.org/10.1134/S0016852111030058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852111030058

Keywords

Navigation