Skip to main content
Log in

Younger and older zircons from rocks of the oceanic lithosphere in the Central Atlantic and their geotectonic implications

  • Published:
Geotectonics Aims and scope

Abstract

Local U-Pb dating of zircons separated from various rocks in the crest zone of the Mid-Atlantic Ridge (MAR) and Carter Seamount (Sierra Leone Rise) is performed. Younger zircons formed in situ in combination with older xenogenic zircons are revealed in enriched basalts, alkaline volcanic rocks, gabbroic rocks, and plagiogranites. Only older zircons are found in depleted basalts and peridotites. Older zircons are ubiquitous in the young oceanic lithosphere of the Central Atlantic. The age of the younger zircons from the crest zone of the MAR ranges from 0.38 to 11.26 Ma and progressively increases receding from the axial zone of the ridge. This fact provides additional evidence for spreading of the oceanic floor. The rate of half-spreading calculated from the age of the studied zircons is close to the rate of half-spreading estimated from magnetic anomalies. The age of the younger zircons from Carter Seamount (58 Ma) corresponds to the age of the volcanic edifice. Older zircons make up an age series from 53 to 3200 Ma. Clusters of zircons differing in age reveal quasiperiodicity of about 200 Ma, which approximately corresponds to the global tectonic epochs in the geological evolution of the Earth. Several age groups of older zircons combine grains close in morphology and geochemistry: (1) Neoproterozoic and Phanerozoic (53–700 Ma) prismatic grains with slightly resorbed faces, well-preserved or translucent oscillatory zoning, and geochemical features inherent to magmatic zircons; (2) prismatic grains dated at 1811 Ma with resorbed faces and edges, fragmentary or translucent zoning, and geochemical features inherent to magmatic zircons; (3) ovoid and highly resorbed prismatic grains with chaotic internal structure and metamorphic geochemical parameters; the peak of their ages is 1880 Ma. The performed study indicates that older xenogenic zircons from young rocks in the crest zone of the MAR were captured by melt or incorporated into refractory restite probably in the sublithospheric mantle at the level of magma generation in the asthenosphere. It is suggested that zircons could have crystallized from the melts repeatedly migrating through the asthenosphere during geological history or were entrapped by the asthenosphere together with blocks of disintegrated and delaminated continental lithosphere in the process of breakup of the continents older than Gondwana. The variability in the age of older zircons even within individual samples may be regarded as evidence for active stirring of matter as a result of periodically arising and destroyed within-asthenospheric convective flows varying in orientation and scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Agapova and V. N. Sharapov, “Morphostructure of the Eastern Junction of the Axial Rift of Mid-Atlantic Ridge (MAR) and the Cape Verde Fracture Zone,” Okeanologiya 33(2), 263–268 (1993).

    Google Scholar 

  2. V. E. Bel’tenev, V. N. Ivanov, S. G. Skolotnev, et al., “New Evidence for Sulfide Occurrences in the Markov Rift Deep at the Mid-Atlantic Ridge in the Equatorial Atlantic (6° N),” Dokl. Akad. Nauk 395(2), 215–220 (2004) [Dokl. Earth Sci. 395 (2), 187–191 (2004)].

    Google Scholar 

  3. B. V. BelyatskY, E. N. Lepekhina, A. V. Antonov, et al., “The Age and Origin of Gabbroic Rocks in MAR,” in Proceeding of XVII Intern. Sci. Conference (School) for Marine Geology: Geology of Seas and Oceans (GEOS, Moscow, 2007), Vol. IV, pp. 192–195 [in Russian].

    Google Scholar 

  4. B. V. Belyatsky, O. G. Shulyatin, E. N. Lepekhina, and S. A. Sergeev, “Polychronic Zircons from Gabbroids in the Mid-Atlantic Ridge,” in Proceedings of VI Working Meeting of the Russian Division of the International InteRidge Projects (VNIIOkeangeologiya, St. Petersburg, 2009), pp. 41–44 [in Russian].

    Google Scholar 

  5. N. A. Bozhko, “Precambrian Orogenic Belts: Typification and Position in Supercontinental Cycles,” in Proceedings of the 38th Tectonic Conference on Tectonics of the Earth’s Crust and Mantle and Tectonic Trends in Localization of Mineral Resources (GEOS, Moscow, 2005), Vol. 1, pp. 60–65 [in Russian].

    Google Scholar 

  6. N. A. Bozhko, “Supercontinental Cyclicity As Manifestation of Pulsatory Character of Global Tectonic Processes Against the Background of the Ordered Structural Grain of the Earth,” in Proceedings of the 41st Tectonic Conference on General and Regional Problems of Tectonics and Geodynamics (GEOS, Moscow, 2008), Vol. 1, pp. 102–105 [in Russian].

    Google Scholar 

  7. N. S. Bortnikov, G. N. Savel’eva, D. I. Matukov, et al., “The Zircon Age of Plagiogranites and Gabbros Based on SHRIMP Data: Pleistocene Intrusion in the MAR Rift Valley, 5°30.6′–5°32.4′ N,” Dokl. Akad. Nauk 404(1), 94–99 (2005) [Dokl. Earth Sci. 404 (7), 1054–1058 (2005)].

    Google Scholar 

  8. N. S. Bortnikov, E. V. Sharkov, O. A. Bogatikov, et al., “Finds of Young and Ancient Zircons in Gabbroids of the Markov Deep, Mid-Atlantic Ridge, 5°54′–5°02.2′ N (Results of SHRIMP-II U-Pb Dating): Implication for Deep Geodynamics of Modern Oceans,” Dokl. Akad. Nauk 421(2), 240–248 (2008) [Dokl. Earth Sci. 421 (5), 859–866 (2008)].

    Google Scholar 

  9. A. E. Eskin, “Characteristic Features of Ore Gabbro Formation in the Third Layer of the Oceanic Crust,” Dokl. Akad. Nauk 426(5), 644–648 (2009) [Dokl. Earth Sci. 427 (5), 711–714 (2009)].

    Google Scholar 

  10. P. K. Kepezhinskas, Yu. N. Raznitsin, A. O. Mazarovich, et al., “Composition of the Mantle and Magma Chambers in the Doldrums Fracture Zone, Central Atlantic,” in Magmatism and Tectonics of Oceans (Nauka, Moscow, 1990), pp. 122–143 [in Russian].

    Google Scholar 

  11. A. O. Mazarovich, “The Structure and History of the Volcanic Islands and Seamounts of the Tropical Atlantic,” Geotektonika 32(4), 53–65 (1998) [Geotectonics 32 (4), 296–307 (1998)].

    Google Scholar 

  12. A. M. Nikishin, “Geological History of the Earth,” in Proceedings of the 41st Tectonic Conference on General and Regional Problems of Tectonics and Geodynamics (GEOS, Moscow, 2008), Vol. 2, pp. 59–62 [in Russian].

    Google Scholar 

  13. V. A. Panaev and S. N. Mitulov, Seismostratigraphy of Sedimentary Cover of Atlantic Ocean (Nedra, Moscow, 1993) [in Russian].

    Google Scholar 

  14. A. A. Peive, Structural and Compositional Heterogeneities, Magmatism, and Geodynamic Features of Atlantic Ocean (Nauchnyi Mir, Moscow, 2002) [in Russian].

    Google Scholar 

  15. A. A. Peive, G. N. Savel’eva, S. G. Skolotnev, and V. A. Simonov, “Structure and Deformations of the Crust-Mantle Boundary Zone in the Vema Fracture Zone, Central Atlantic,” Geotektonika 35(1), 16–35 (2001) [Geotectonics 35 (1), 12–29 (2001)].

    Google Scholar 

  16. A. A. Peyve and S. G. Skolotnev, “Alkali Volcanism of the Bathymetrists Seamounts Chain (Central Atlantic): Description and Comparison,” Dokl. Akad. Nauk 425(1), 76–82 (2009) [Dokl. Earth Sci 425 (2), 243–248 (2009)].

    Google Scholar 

  17. A. S. Perfil’ev, Yu. N. Raznitsin, A. A. Peyve, et al., “MAR Rift Valley and Fifteen Twenty Fracture Zone Intersection: Magmatism and Structure,” Petrologiya 4(2), 183–199 (1996) [Petrology 4 (2), 168–183 (1996)].

    Google Scholar 

  18. V. V. Petrova, S. G. Skolotnev, and N. I. Chistyakova, Composition of Accessory Zircon from Tuffs of Carter Seamount (Sierra Leone Rise, East Atlantic), Dokl. Akad. Nauk 431(1), 67–71 (2010) [Dokl. Earth Sci. 431 (1), 275–279 (2010)].

    Google Scholar 

  19. Yu. M. Pushcharovskii, S. G. Skolotnev, A. A. Peive, et al., Geology and Metallogeny of the Mid-Atlantic Ridge 5–7°N (GEOS, Moscow, 2004) [in Russian].

    Google Scholar 

  20. Yu. N. Raznitsin, Tectonic Delamination of the Lithosphere in Young Oceans and Paleooceanic Basins (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  21. G. N. Savel’eva, A. V. Sobolev, V. G. Batanova, et al., “Structure of Melt Flow Channels in the Mantle,” Geotektonika 42(6), 1–21 (2008) [Geotectonics 42 (6), 430–447 (2008)].

    Google Scholar 

  22. G. N. Savel’eva, P. V. Suslov, and A. N. Larionov, “Vendian Tectono-Magmatic Events in Mantle Ophiolitic Complexes of the Polar Urals: U-Pb Dating of Zircon from Chromitite,” Geotektonika 41(2), 23–33 (2007) [Geotectonics 41 (2), 105–113 (2007)].

    Google Scholar 

  23. S. G. Skolotnev, “Gabbroids of the Vema Fracture Zone: Textures, Composition, and Tectonic Setting,” Petrologiya 11(1), 18–31 (2003) [Petrology 11 (1), 31–47 (2003)].

    Google Scholar 

  24. S. G. Skolotnev, V. E. Bel’tenev, E. N. Lepekhina, and I. S. Ipat’eva, “Young and Old Zircons from Rocks of the Oceanic Lithosphere in Central Atlantic: Geotectonic Implications,” in Proceeding of XVIII Intern. Sci. Conference (School) for Marine Geology: Geology of Seas and Oceans (GEOS, Moscow, 2009), Vol. V, pp. 251–255 [in Russian].

    Google Scholar 

  25. S. G. Skolotnev, E. N. Lepekhina, and I. S. Ipat’eva, “Age of Zircons from Igneous Rocks of the Markov Basin (Axial Zone of the MAR, 5–6° N) and Interaction of Tectonic Magmatic, and Hydrothermal Processes,” in Proceedings of VI Working Meeting of the Russian Division of the International InteRidge Projects (VNIIOkeangeologiya, St. Petersburg, 2009), pp. 30–33 [in Russian].

    Google Scholar 

  26. S. G. Skolotnev, A. A. Peyve, N. S. Bortnikov, et al., “Geology of Ore-Hosting Rift Deeps near the Sierra Fracture Zone, Equatorial Atlantic,” Dokl. Akad. Nauk 391(2), 232–238 (2003) [Dokl. Earth Sci. 391 (5), 679–684 (2003)].

    Google Scholar 

  27. S. G. Skolotnev, A. A. Peyve, V. Yu. Lavrushin, et al., “Geological Structure and Indicators of Hydrothermal Ore-Bearing Activity at the Junction of the Southern Rift Segment and the Doldrums Transform Fracture Zone, Central Atlantic,” Dokl. Akad. Nauk 407(3), 372–377 (2006) [Dokl. Earth Sci. 407A (3), 361–365 (2006)].

    Google Scholar 

  28. S. G. Skolotnev, A. A. Peyve, and S. M. Lyapunov, “Tectono-Volcanic Activity at the Axial Zone of the Mid-Atlantic Ridge between the Fifteen Twenty and Mercurius Fracture Zones, Central Atlantic,” Petrologiya 7(6), 591–610 (1999) [Petrology 7 (6), 556–573 (1999)].

    Google Scholar 

  29. S. G. Skolotnev, A. A. Peyve, V. A. Simonov, et al., “Volcanism of Mid-Atlantic Ridge in the Area of Sierra Leone Fracture Zone, Central Atlantic,” Russ. J. Earth Sci. (electronic version, www.agu.org/wrs/rjes) 5(2) (2003).

  30. S. G. Skolotnev, N. N. Turko, S. Yu. Sokolov, et al., “New Data on the Geological Structure of the Junction of the Cape Verde Plateau, Cape Verde Abyssal Plain, and Bathymetrists Seamounts (Central Atlantic Ocean) 416(4), 1037–1041 (2007) [Dokl. Earth Sci. 416 (7), 1037–1041 (2007)].

    Google Scholar 

  31. S. G. Skolotnev, N. V. Tsukanov, N. N. Turko, and A. A. Peyve, “New Data on Neotectonic Activity in the Crest Zone of the Mid-Atlantic Ridge at 5–6° N,” Dokl. Akad. Nauk 395(1), 89–90 (2004) [Dokl Earth Sci. 395 (2), 178–182 (2004)].

    Google Scholar 

  32. A. V. Sobolev, L. V. Dmitriev, O. P. Tsameryan, et al., “Structure and Origin of Geochemical Anomaly in Basalts of Mid-Atlantic Ridge between 12–18° N,” Dokl. Akad. Nauk SSSR 326(3), 541–546 (1992).

    Google Scholar 

  33. Structure of the Doldrums Fracture Zone, Central Atlantic, Ed. by Yu. M. Pushcharovsky (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  34. Structure of the Fifteen Twenty Fracture Zone, Central Atlantic, Ed. by Yu. M. Pushcharovsky (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  35. V. E. Khain, Main Problems of Modern Geology (Nauka, Moscow, 1995) [in Russian].

    Google Scholar 

  36. V. E. Khain, Tectonics of Continents and Oceans (Nauchnyi Mir, Moscow, 2001) [in Russian].

    Google Scholar 

  37. V. E. Khain, “Tectonics and Dynamics of the Earth,” in Tectonics and Geodynamics (VSEGEI, St. Petersburg, 2004), pp. 33–41 [in Russian].

    Google Scholar 

  38. V. E. Khain and M. G. Lomize, Geotectonics with Principles of Geodynamics (Moscow State Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  39. O. G. Shulyatin, S. I. Andreev, B. V. Belyatsky, and A. I. Trukhalev, “Structural and Tectonic Position and Age of Plutonic Mafic-Ultramafic Complexes of MAR,” in Sixty Years in Arctica, Antarctica, and World Ocean (VNIIOkeangeologiya, St. Petersburg, 2008), pp. 392–408 [in Russian].

    Google Scholar 

  40. J. M. Auzende, D. Bideau, E. Bonatti, et al., “Direct Observation of a Section Through Slow-Spreading Oceanic Crust,” Nature 337, 726–729 (1989).

    Article  Google Scholar 

  41. S. L. Baldwin and T. R. Ireland, “A Tale of Two Eras: Plio-Pleistocene Unroofing of Cenozoic and Late Archean Zircons from Active Metamorphic Core Complexes, Solomon Sea, Papua New Guinea,” Geology 23, 1023–1026 (1995).

    Article  Google Scholar 

  42. L. P. Black and S. L. Kamo, “TEMORA 1: A New Zircon Standard for U-Pb Geochronology,” Chem. Geol. 200, 155–170 (2003).

    Article  Google Scholar 

  43. E. Bonatti, “Subcontinental Mantle Exposed in the Atlantic Ocean on the St. Peter-Paul Islets,” Nature 345, 800–802 (1990).

    Article  Google Scholar 

  44. E. Bonatti and K. Crane, “Oscillatory Spreading Explanation of Anomalously Old Uplifted Crust Near Oceanic Transforms,” Nature 300, 343–345 (1982).

    Article  Google Scholar 

  45. E. Bonatti, M. Ligi, A. Borsetti, et al., “Lower Cretaceous Deposits Trapped Near the Equatorial Mid-Atlantic Ridge,” Nature 380, 518–520 (1996).

    Article  Google Scholar 

  46. E. Bonatti, M. Ligi, D. Brunelli, et al., “Mantle Thermal Pulses Below the Mid-Atlantic Ridge and Temporal Variations in the Formation of Oceanic Lithosphere,” Nature 423, 499–505 (2003).

    Article  Google Scholar 

  47. E. Bonatti, M. Ligi, L. Gasperini, et al., “Imaging Crustal Uplift, Emersion and Subsidence at the Vema Fracture Zone,” EOS, No. 9, 371–372 (1994).

  48. E. Bonatti, M. Ligi, L. Gasperini, et al., “Transform Migration and Vertical Tectonics at the Romanche Fracture Zone, Equatorial Atlantic,” J. Geophys. Res. 99 (1994).

  49. E. Bonatti, A. Peyve, P. Kepezhinskas, et al., “Upper Mantle Heterogeneity below the MAR (0–15° N),” J. Geophys. Res. 97(B4), 4461–4476 (1992).

    Article  Google Scholar 

  50. S. C. Cande, J. L. LaBrecque, and W. F. Haxby, “Plate Kinematics of the South Atlantic: Chron 34 to Present,” J. Geophys. Res. 93(B11), 13 479–13 492 (1988).

    Article  Google Scholar 

  51. M. Cannat, V. Mamaloukas-Frangooulis, J. M. Auzende, et al., “A Geological Cross Section of the Vema Fracture Zone Transversive Ridge, Atlantic Ocean,” J. Geodynamics 13(2/4), 97–118 (1991).

    Article  Google Scholar 

  52. M. Cannat, Y. Lagabrielle, H. Bougault, et al., “Ultramafic and Gabbroic Exposures at the Mid-Atlantic Ridge: Geological Mapping in the 15° N Region,” Tectonophysics 279, 193–213 (1997).

    Article  Google Scholar 

  53. F. Corfu, J. M. Hanchar, P. W. O. Hoskin, and P. Kinny, “Atlas of Zircon Textures,” Rev. Mineral. Geochem. 53, 468–500 (2003).

    Article  Google Scholar 

  54. L. Dosso, H. Bougault, and J.-L. Joron, “Geochemical Morphology of the North Mid-Atlantic Ridge, 10–24° N: Trace Element-Isotope Complementarity,” Earth Planet. Sci. Lett. 120, 443–462 (1993).

    Article  Google Scholar 

  55. L. Dosso, B. B. Hanan, H. Bougault, et al., “Sr-Nd-Pb Geochemical Morphology Between 10 and 17° N on Mid-Atlantic Ridge: a New MORB Isotope Signature,” Earth Planet. Sci. Lett. 106(1), 29–43 (1991).

    Article  Google Scholar 

  56. R. Doucelance, S. Escrig, M. Moreira, et al., “Pb-Sr-He and Trace Element Geochemistry of the Cape Verde Archipelago,” Geochim. Cosmochim. Acta 67(19), 3717–3733 (2003).

    Article  Google Scholar 

  57. F. A. Frey, D. Weiss, Y. A. Borisova, and G. Xu, “Involvement of Continental Crust in the Formation of the Cretaceous Kerguelen Plateau: New Perspectives from ODP Leg 120 Sites,” J. Petrol. 43, 1207–1239.

  58. General Bathymetric Chart of the Ocean (GEBCO) 1: 10000000 (Canad. Hydrograph. Serv., Ottawa, 1982).

  59. S. A. Gibson, R. N. Thompson, J. A. Day, et al., “Melt Generation Processes Associated with the Tristan Mantle Plume: Constraints of the Origin of EM-1,” Earth Planet. Sci. Lett. 237, 744–767 (2005).

    Article  Google Scholar 

  60. A. W. Hoffman, “Chemical Differentiation of the Earth: The Relationships Between Mantle, Continental Crust, and Oceanic Crust,” Earth Planet. Sci. Lett. 90, 297–314 (1991).

    Article  Google Scholar 

  61. J. Honnorez, C. Mevel, and R. Montigny, “Geotectonic Significance of Gneissic Amphibolites from the Vema Fracture Zone, Equatorial Mid-Atlantic Ridge,” J. Geophys. Res. 89(B9), 11 379–11 400 (1984).

    Google Scholar 

  62. P. W. O. Hoskin and U. Schaltegger, “The Composition of Zircon and Igneous and Metamorphic Petrogenesis,” Rev. Mineral. Geochem. 53, 27–62 (2003).

    Article  Google Scholar 

  63. P. B. Kelemen, N. Shimizu, and V. J. M. Salters, “Extraction of Mid-Ocean-Ridge Basalt from the Upwelling Mantle by Focused Flow of Melt in Dunite Channels,” Nature 375, 747–753 (1995).

    Article  Google Scholar 

  64. E. M. Klein and Ch. H. Langmuir, “Global Correlations of Ocean Ridge Basalt Chemistry with Axial Depth and Crustal Thickness,” J. Geophys. Res. 92(B8), 8089–8115 (1987).

    Article  Google Scholar 

  65. K. Klitgord and H. Schouten, “Plate Kinematics of the Central Atlantic,” in The Geology of North America: the Western Atlantic Region (DNAG Ser., Vol. 1, 1978), pp. 351–377.

    Google Scholar 

  66. Leg 209. Preliminary Report. Drilling Mantle Peridotite along the Mid-Atlantic Ridge from 14 to 16° N (www-ODP.Taamu.edu, 2003).

  67. K. R. Ludwig, SQUID 1.00 Users Manual (Berkeley Geochronology Center, Berkeley, 2000), Spec. Publ. no. 2.

    Google Scholar 

  68. P. J. Michael and E. Bonatti, “Peridotite Composition from the North Atlantic: Regional and Tectonic Variations and Implications for Partial Melting,” Earth Planet. Sci. Lett. 73, 91–104 (1985).

    Article  Google Scholar 

  69. J. Ph. Morgan and W. J. Morgan, “Two-Stage Melting and Geochemical Evolution of the Mantle: a Recipe for Mantle Plume-Pudding,” Earth Planet. Sci. Lett. 170, 215–239 (1999).

    Article  Google Scholar 

  70. A. Nicolas, “A Melt Extraction Based on Structural Studies in the Mantle Peridotites,” J. Petrol. 27, 999–1022 (1986).

    Google Scholar 

  71. Ya. Niu, Ch. H. Langmuir, and R. J. Kinzler, “The Origin of Abyssal Peridotites: a New Perspective,” Earth Planet. Sci. Lett. 152, 251–265 (1997).

    Article  Google Scholar 

  72. A. Peyve, E. Bonatti, D. Brunelli, et al., “New Date on Some MAR Structures: Preliminary Results of R/V Akademik Nikolaj Strakhov 22 Cruise,” InterRidge News 9(2), 28 (2000).

    Google Scholar 

  73. J. Pilot, C. D. Werner, F. Haubrich, and N. Baumann, “Paleozoic and Proterozoic Zircons from the Mid-Atlantic Ridge,” Nature 393, 676–679 (1998).

    Article  Google Scholar 

  74. M. Rabinowicz, A. Nicolas, and J. L. Vigneresse, “A Rolling Mill Effect in Asthenosphere Beneath Oceanic Spreading Centers,” Earth Planet. Sci. Lett. 67, 97–108 (1984).

    Article  Google Scholar 

  75. W. R. Roest and B. J. Collete, “The Fifteen-Twenty Fracture Zone and North American-South American Plate Boundary,” J. Geol. Soc. 143(5), 833–843 (1986).

    Article  Google Scholar 

  76. S. Rouzo, M. Rabinowicz, and A. Briais, “Segmentation of Mid-Ocean Ridges with An Axial Valley Induced by Small Mantle Convection,” Nature 374, 795–798 (1995).

    Article  Google Scholar 

  77. D. T. Sandwell and W. H. V. Smith, “Marine Gravity Anomaly from Geosat and ERS 1 Satellite Altimetry,” J. Geoph. Res. 102, 10 039–10 054 (1997).

    Article  Google Scholar 

  78. J. Schilling, B. Hanan, B. McCulli, et al., “Influence of the Sierra Leone Mantle Plume on the Equatorial Mid-Atlantic Ridge: A Nd-Sr-Pb Isotopic Study,” J. Geophys. Res. 99(B6), 12 005–12 028 (1994).

    Article  Google Scholar 

  79. J. S. Stacey and J. D. Kramers, “Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model,” Earth Planet. Sci. Lett. 26, 207–221 (1975).

    Article  Google Scholar 

  80. F. Terra and J. A. Wasserburg, “U-Pb Method of the Isotopic Dating of the Minerals,” Earth Planet. Sci. Lett. 17, 36–51 (1972).

    Article  Google Scholar 

  81. M. Wiedenbeck, P. Alle, F. Corfu, et al., “Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, trace element, and REE analysis,” Geostandard Newsletter 19, 1–3 (1995).

    Article  Google Scholar 

  82. I. S. Williams, “Applications of Microanalytical Techniques to Understanding Mineralizing Processes,” Rev. Econ. Geol. 7, 1–35 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Skolotnev.

Additional information

Original Russian Text © S.G. Skolotnev, V.E. Bel’tenev, E.N. Lepekhina, I.S. Ipat’eva, 2010, published in Geotektonika, 2010, Vol. 44, No. 6, pp. 24–59.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skolotnev, S.G., Bel’tenev, V.E., Lepekhina, E.N. et al. Younger and older zircons from rocks of the oceanic lithosphere in the Central Atlantic and their geotectonic implications. Geotecton. 44, 462–492 (2010). https://doi.org/10.1134/S0016852110060038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852110060038

Keywords

Navigation