Skip to main content
Log in

Breakup of Rodinia and early stages of evolution of the Paleoasian ocean

  • Published:
Geotectonics Aims and scope

Abstract

The main stages of the evolution of newly formed structural elements are considered against the background of breakup of the epi-Grenville Rodinia supercontinent, which started about 950 Ma ago. The paleomagnetic data on pathways of the traveling of Rodinia’s fragments are analyzed and evidence for their geology, magmatism, and sedimentation are integrated with special emphasis on the evolution of the continental margins. A series of paleotectonic maps with elements of paleogeography for time intervals of 950–900, 850–800, 750–700, 650–630, and 570–550 Ma ago has been compiled on the basis of palinspastic reconstructions with allowance for new paleomagnetic data primarily concerning the position of Siberia in the Late Precambrian. Objects all over the world, not only in Russia, are involved in the analysis, though with less thoroughly described paleogeography. The structural elements of the Paleoasian ocean are included into the system of global paleooceans and framing paleocontinents. The history of the Paleoasian ocean is traced through 400 Ma from the breakup of the Rodinia supercontinent to the origin of the new Paleogondwana supercontinent about 550 Ma ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atlas of Lithologic-Paleogeographic, Structural, Palinspastic and Geoecological Maps of Central Eurasia (YuGGEO Research Inst. Mineral Resources, Almaty, 2002) [in Russian].

  2. V. G. Belichenko and N. K. Giletii, “Recognition of the Barguzin Microcontinent in the Paleoasian Ocean,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent) (Inst. Earth Crust, Siberian Branch, Russian Acad. Sci., Irkutsk, 2004), Vol. 1, No. 2, pp. 30–34.

    Google Scholar 

  3. V. G. Belichenko, T. A. Dol’nik, S. A. Anisimova, and N. K. Giletii, “Geodynamic Background of Neoproterozoic Sedimentation in the Western Baikal Region,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent) (Inst. Earth Crust, Siberian Branch, Russian Acad. Sci., Irkutsk, 2007), Vol. 1, No. 5, pp. 21–23.

    Google Scholar 

  4. V. S. Burtman, Tien Shan and High Asia. Tectonic and Geodynamics in Paleozoic (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  5. V. A. Bush and V. G. Kaz’min, “Crystalline Basement and Fold Complex of the Volga-Ural, Pericaspian, and Fore-Caucasus Petroliferous Basins,” Geotektonika 42(5), 79–97 (2008) [Geotectonics 42 (5), 396–409 (2008)].

    Google Scholar 

  6. V. A. Vernikovsky, Geodynamic Evolution of the Taymyr Fold Region (Sci.-Inform. Center UIGGM, Novosibirsk, 1996) [in Russian].

    Google Scholar 

  7. V. A. Vernikovsky, “Tectonic Structure of the Taimyr-Novaya Zemlya Region and Its Geodynamic Evolution,” in Proceedings of Conference on Polar Regions of the Earth (GEOS, Moscow, 2009), Vol. 1, pp. 90–94 [in Russian].

    Google Scholar 

  8. V. A. Vernikovsky and A. E. Vernikovskaya, “Tectonics and Evolution of Granitoid Magmatism of the Yenisei Ridge,” Geol. Geofiz. 47(1), 35–52 (2006).

    Google Scholar 

  9. V. A. Vernikovsky, A. E. Vernikovskaya, A. B. Kotov, E. B. Sal’nikova et al., “Growth of the Continental Crust of the Yenisei Range in the Neoproterozoic: New Geological and Geochronological Data,” in Proceedings of All-Russia Sci. Conference on Geology and Geophysics on Turn of the 20th and 21st Centuries (GEOS, Moscow, 2002), Vol. 1 pp. 32–33.

    Google Scholar 

  10. V. A. Vernikovsky, A. E. Vernikovskaya, D. V. Metelkin, and E. B. Sal’nikova, “Evolution of Tectonic Structure and Magmatism of the Western Framework of the Siberian Craton in the Neoproterozoic: New Geological, Geochronological, and Geomagnetic Data,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent) (Inst. Earth Crust, Siberian Branch, Russian Acad. Sci., Irkutsk, 2007), Vol. 1, No. 5, pp. 33–34.

    Google Scholar 

  11. V. A. Vernikovsky, A. E. Vernikovskaya, A. E. Chernykh et al., “Porozhnaya Granitoids of the Enisei Ophiolite Belt: Indicators of Neoproterozoic Events on the Enisei Ridge,” Dokl. Akad. Nauk 381(6), 806–810 (2001) [Dokl. Earth Sci. 381A (9), 1043–1046 (2001)].

    Google Scholar 

  12. R. V. Veselovsky, P. Yu. Petrov, S. F. Karpenko et al., “New Paleomagnetic and Isotopic Data on the Late Proterozoic Igneous Complex on the Northern Slope of the Anabar Rise,” Dokl. Akad. Nauk 410(6), 775–779 (2006) [Dokl. Earth Sci. 411 (8), 1190–1194 (2006)].

    Google Scholar 

  13. Yu. A. Volozh, M. P. Antipov, I. A. Garagash, and L. I. Lobkovsky, “A Geodynamic Model of the Pericaspian Basin,” in Proceedings of Conference on Tectonics and Geodynamics: General and Regional Aspects (GEOS, Moscow 1998), vol. 2, p. 119.

    Google Scholar 

  14. Yu. A. Volozh, M. P. Antipov, I. A. Garagash, and L. I. Lobkovsky, “Eclogite Model of the Formation of the Pericaspian Basin,” in Sedimentary Basins: Research Methods, Structure and Evolution (Nauchnyi Mir, Moscow, 2004), pp. 471–485 [in Russian].

    Google Scholar 

  15. D. P. Gladkochub, T. V. Donskaya, A. M. Mazukabzov et al., “Evolution of the Southern Part of the Siberian Craton in the Neoproterozoic: Petrology and Geochronology of Igneous Complexes, Possible Interrelations with Breakdown of Rodinia and Opening of Paleoasian Ocean,” in Tectonics of Central Asia (GEOS, Moscow, 2005), pp. 127–136 [in Russian].

    Google Scholar 

  16. K. E. Degtyarev, K. N. Shatagin, A. B. Kotov et al., “Precambrian Volcanic and Granitoid Complexes of the Aqtau-Zhungar Massif, Central Kazakhstan: Structural Position and Age,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent) (Inst. Earth Crust, Siberian Branch, Russian Acad. Sci., Irkutsk, 2006), Vol. 1, pp. 82–85.

    Google Scholar 

  17. K. E. Degtyarev, K. N. Shatagin, A. B. Kotov, et al., “The Late Precambrian Volcanic-Plutonic Association of the Aktau-Dzhungar Massif, Central Kazakhstan: Structural Position and Age,” Dokl. Akad. Nauk 421(4), 224–228 (2008) [Dokl. Earth Sci. 421A (6), 879–883 (2008)].

    Google Scholar 

  18. A. N. Didenko, V. A. Bush, S. G. Samygin, and T. N. Kheraskova, “Vizualization and Joint Interactive Analysis of Paleomagnetic and Structural Geological Data for Development of Model of the Evolution of Paleoasian Ocean,” in Electronic Earth: Information Resources and Modern Technologies for Increase in Reliability of Scientific Forecasting on the Basis of Modeling of Solution in Integral Information Fields (in press).

  19. A. N. Didenko, A. A. Mossakovsky, D. M. Pechersky, et al., “Geodynamics of Paleozoic Oceans in Central Asia,” Geol. Geofiz. 35(7–8) (1994).

  20. L. P. Zonenshain, M. I. Kuz’min, and L. Sh. Natapov, Tectonics of Lithospheric Plates in Territory of the USSR (Nedra, Moscow, 1990), Vol. 2 [in Russian].

    Google Scholar 

  21. A. E. Izokh, “Basic Magmatism at Early Stages of the Evolution of the Central Asian Foldbelt,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent) (Inst. Earth Crust, Siberian Branch, Russian Acad. Sci., Irkutsk, 2005), Vol. 1, No. 3, pp. 102–104.

    Google Scholar 

  22. V. G. Kaz’min, “Tectonic Evolution of the Mozambique Belt: From Accretion to Collision,” Geotektonika 22(3), 26–34 (1988).

    Google Scholar 

  23. L. G. Kiryukhin, Doctoral Dissertation in Geology and Mineralogy (Moscow, 1974).

  24. I. K. Kozakov, V. P. Kovach, E. B. Sal’nikova, and A. N. Didenko, “Crystalline Complexes of Central Asia in Geological Evolution of Paleoasian Ocean,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent) (Inst. Earth Crust, Siberian Branch, Russian Acad. Sci., Irkutsk, 2004), Vol. 1, No. 2, pp. 171–174.

    Google Scholar 

  25. I. K. Kozakov, E. B. Sal’nikova, A. B. Kotov, et al., “Age Boundaries and Geodynamic Settings of the Formation of Crystalline Complexes of the Eastern Segment of the Central Asian Foldbelt,” in Tectonics of Central Asia (GEOS, Moscow, 2005), pp. 137–170 [in Russian].

    Google Scholar 

  26. I. K. Kozakov, E. B. Sal’nikova, A. M. Fedoseenko, and S. Z. Yakovleva, “Accretion-Collision Stage of the Formation of Early Caledonian Superterrane of Central Asia,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent) (Inst. Earth Crust, Siberian Branch, Russian Acad. Sci., Irkutsk, 2005), Vol. 1, No. 3, pp. 129–131 [in Russian].

    Google Scholar 

  27. A. B. Kuz’michev, Tectonic History of the Tuva-Mongolia Massif: Early Baikalian, Late Baikalian, and Early Caledonian Stages (Probel-2000, Moscow, 2004) [in Russian].

    Google Scholar 

  28. A. V. Lavrenchuk, D. V. Metelkin, and I. V. Belonosov, “New Petrologic, Geochemical, and Paleomagnetic Data on the Neoproterozoic Dike Complexes of the Sayan-Yenisei Margin of the Siberian Craton,” in Proceeding of Sci. Conference on Petrology of Igneous and Metamorphic Complexes (Tomsk State Univ., Tomsk, 2005), pp. 100–105.

    Google Scholar 

  29. G. I. Lebed’ko and V. I. Usik, Geochronology of the Northern Caucasus (Rostov State Univ., Rostov-on-Don, 1985).

    Google Scholar 

  30. N. M. Levashova, A. S. Gibsher, V. M. Kalugin, A. B. Ryabinin et al., “Paleomagnetism and Age of the Late Neoproterozoic Volcanic Rocks from Microcontinents of Central Asian Mobile Belt,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent) (Inst. Earth Crust, Siberian Branch, Russian Acad. Sci., Irkutsk, 2008), Vol. 2, pp. 13–14.

    Google Scholar 

  31. V. A. Makrygina, V. G. Belichenko, and L. Z. Reznitsky, “Evolution of Paleoisland Arcs and Backarc Basins in the Northeastern Part of Paleoasian Ocean from Geochemical Data,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent) (Inst. Earth Crust, Siberian Branch, Russian Acad. Sci., Irkutsk, 2007), Vol. 2, No. 5, pp. 41–44 [in Russian].

    Google Scholar 

  32. D. V. Metelkin, I. V. Belonosov, D. P. Gladkochub et al., “Paleomagnetic Directions in Intrusions of the Nersa Complex in the Biryusa Sayan Region As a Reflection of Tectonic Events in Neoproterozoic,” Geol. Geofiz. 46(4), 398–413 (2005).

    Google Scholar 

  33. D. V. Metelkin, V. A. Vernikovsky, and A. Yu. Kazansky, “Neoproterozoic Stage of Evolution of Rodinia in the Light of New Paleomagnetic Data on the Western Margin of the Siberian Craton,” Geol. Geofiz. 48(1), 42–59 (2007).

    Google Scholar 

  34. A. A. Mossakovsky, “General Trends in the Formation of Phanerozoic Foldbelts in the Indo-Atlantic Segment of the Earth and the Role of the Oceanic and Continental Lithosphere in This Process,” Dokl. Akad. Nauk 402(6), 795–799 (2005) [Dokl. Earth Sci. 403 (5), 669–672 (2005)].

    Google Scholar 

  35. A. A. Mossakovsky, S. V. Ruzhentsev, S. G. Samygin, and T. N. Kheraskova, “Central Asian Foldbelt: Geodynamic Evolution and Formation History,” Geotektonika 27(6), 3–32 (1993).

    Google Scholar 

  36. A. A. Mossakovsky, Yu. M. Pushcharovsky, and S. V. Ruzhentsev, “Spatiotemporal Relationships between the Pacific- and Indo-Atlantic-Type Structures in the Late Precambrian and the Vendian,” Dokl. Akad. Nauk 350(6), 799–802 (1996) [Dokl. 351 (8), 1208–1211 (1996)].

    Google Scholar 

  37. A. A. Nosova, Doctoral Dissertation in Geology and Mineralogy (Moscow, 2007).

  38. V. E. Pavlov, Y. Gallet, P. Yu. Petrov et al., “The Ui Group and Late Riphean Sills of the Uchur-Maya District: Isotopic, Paleomagnetic Data and an Issue of theRodinia Supercontinent,” Geotektonika 36(4), 26–41 (2002) [Geotectonics 36 (4), 278–292 (2002)].

    Google Scholar 

  39. L. M. Parfenov, N. A. Berzin, A. I. Khanchuk et al., “A Model of Formation of Orogenic Belts of Central and Northeastern Asia,” Tikhookean. Geol. 22(6), 7–41 (2003).

    Google Scholar 

  40. V. N. Puchkov, Paleogeodynamics of the South and Central Urals (Dauriya, Ufa, 2000) [in Russian].

    Google Scholar 

  41. V. N. Puchkov, “Uralides and Timanides, Their Structural Links and Place in Geological History of the Ural-Mongolian Foldbelt,” Geol. Geofiz. 44(1/2), 28–39 (2003).

    Google Scholar 

  42. Yu. M. Pushcharovsky, “The Moving Continents,” Geotektonika 38(3), 3–12 (2004) [Geotectonics 38 (3), 157–165 (2004)].

    Google Scholar 

  43. E. Yu. Rytsk, “Main Events in the Neoproterozoic of the Baikal-Muya Belt,” in Proceedings of the 2nd Russian Conference on Isotopic Geochronology (Institute of Precambrian Geology and Geochronology, 2003), pp. 437–439.

  44. E. Yu. Rytsk, V. P. Kovach, V. V. Yarmolyuk et al., “Istochniki porod i evolyutsiya kontinental’noi kory v strukturakh Barguzino-Vitimskogo superterreina,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent) (Inst. Earth Crust, Siberian Branch, Russian Acad. Sci., Irkutsk, 2008), Vol. 2, pp. 74–76.

    Google Scholar 

  45. S. G. Samygin and V. S. Burtman, “Tectonics of the Ural Paleozoides in Comparison with the Tien Shan” Geotektonika 43(2), 57–77 (2009) [Geotectonics 43 (2), 133–151 (2009)].

    Google Scholar 

  46. V. A. Semkin, S. G. Korsakov, and A. B. Kotov, “Results of Sm-Nd and U-Pb Isotopic Study of Rocks from the Bechasyn Zone of the Central Caucasus,” in Geology and Geoecology of the South of Russia and the Caucasus (NABLA, Novocherkassk, 1997), pp. 43–44 [in Russian].

    Google Scholar 

  47. V. A. Simonov, E. V. Sklyarov, S. V. Kovyazin, and V. I. Perelyaev, “Parameters of the Oldest (1020 Ma) Boninite Magmatic Systems Operating during Early Stages of Evolution of the Paleoasian Ocean,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent) (Inst. Earth Crust, Siberian Branch, Russian Acad. Sci., Irkutsk, 2005), pp. 94–96.

    Google Scholar 

  48. E. V. Sklyarov, D. P. Gladkochub, A. M. Mazukabzov, A. M. Stanevich, et al., “Complexes-Indicators of the Breakdown of Rodinia Supercontinent in Structural Elements of the Southern Flank of the Siberian Craton,” in Guidebook of Geological Excursion of Sci. Conference on Supercontinents in the Precambrian Geological Evolution (Inst. Earth’s Crust, Irkutsk, 2001) [in Russian].

    Google Scholar 

  49. V. A. Snezhko, “The Riphean Stratified Rocks of the Karachaevsky-Cherkessky Zone of the Central Caucasus,” Region. Geol. Metallog., No. 25, pp. 87–94 (2005).

  50. Yu. K. Sovetov and D. A. Komlev, “Tillites at the Base of the Oselok Group, Foothills of the Sayan Mountains and the Vendian Lower Boundary in the Southwestern Siberian Platform,” Stratigr. Geol. Korrelyatsiya 13(4), 3–34 (2005) [Stratigr. Geol. Correlation 13 (4), 337–366 (2005)].

    Google Scholar 

  51. Yu. K. Sovetov, S. A. Moiseev, and V. V. Blagovidov, “Baikalian (Cadomian) Folding and Deformation of the Siberian Craton,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent) (Inst. Earth Crust, Siberian Branch, Russian Acad. Sci., Irkutsk, 2007), Vol. 2, pp. 82–84 [in Russian].

    Google Scholar 

  52. M. L. Somin, “Main Structural Features of the pre-Alpine Basement of the Greater Caucasus,” in The Greater Caucasus in the Alpine Epoch, Ed. by Yu.G. Leonov (GEOS, Moscow, 2007), pp. 15–38 [in Russian].

    Google Scholar 

  53. A. A. Sudorgin, Candidate’s Dissertation in Geology and Mineralogy (Frunze, 1990).

  54. A. A. Sudorgin, “New Data on Composition and Structure of the Late Precambrian Volcanic Rocks of the Naryn-Too Range, the Middle Tien Shan,” Uzbek. Geol. Zh., No. 3, 3–7 (1983).

  55. The Timan-Pechora Sedimentation Basin. Atlas of Geological Maps (Regional. Dom Pechati, Ukhta, 2000).

  56. O. M. Turkina, A. D. Nozhkin, and T. B. Bayanova, “Precambrian Terranes in the Southwestern Framework of the Siberian Craton: Isotopic Provinces and Stages of Crust-Forming Events in Proterozoic,” in Proceedings of conference on Isotopic Dating of Ore Formation, Magmatism, and Sedimentation, and Metamorphism (GEOS, Moscow, 2006), Vol. 2, pp. 360–365.

    Google Scholar 

  57. O. M. Turkina, A. D. Nozhkin, T. B. Bayanova, and N. V. Dmitrieva, “Precambrian Terranes in the Southwestern Framework of the Siberian Craton: Isotopic Provinces and Stages of Crust Formation and Accretion-Collision Events: The State of the Art,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent) (Inst. Earth Crust, Siberian Branch, Russian Acad. Sci., Irkutsk, 2007), pp. 123–126.

    Google Scholar 

  58. N. I. Filatova and V. E. Khain, “Tektonics of the Eastern Arctic Region,” Geotektonika 41(3), 3–29 (2007) [Geotectonics 41 (3), 171–194 (2007)].

    Google Scholar 

  59. L. I. Filatova, “Fragments of the Late Proterozoic Rodinia Supercontinent in Xinjang and Eastern Kazakhstan,” Byull. Mosk. Ob-va Ispyt. Prirod., Otd. Geol. 77(6), 3–22 (2002).

    Google Scholar 

  60. E. M. Khabarov, “Specific Evolution of the Patom Basin in the Neoproterozoic: Results of Sedimentological and Isotopic Geochemical Studies,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent) (Inst. Earth Crust, Siberian Branch, Russian Acad. Sci., Irkutsk, 2007), Vol. 2, No. 5, pp. 150–151.

    Google Scholar 

  61. V. E. Khain, Tectonics of Continents and Oceans (Year 2000) (Nauchnyi Mir, Moscow, 2001) [in Russian].

    Google Scholar 

  62. T. N. Kheraskova, N. K. Andreeva, A. K. Vorontsov, and N. A. Kagramanyan, “Evolution History and Geodynamics of Sedimentary Basin of the Moscow Syneclise in the Late Vendian,” Litosfera, No. 2, 16–40 (2005).

  63. T. N. Kheraskova, M. P. Antipov, and Yu. A. Volozh, “A.A. Bogdanov and Tectonics of the East European Platform,” Byull. Mosk. Ob-Va Ispyt. Prirod., Otd. Geol. 82(1), 12–23 (2007).

    Google Scholar 

  64. T. N. Kheraskova, S. G. Samygin, S. V. Ruzhentsev, and A. A. Mossakovsky, “Late Riphean Marginal continental volcanic belt of the Eastern Gondwana,” Dokl. Akad. Nauk 342(5), 661–664 (1995).

    Google Scholar 

  65. A. K. Khudolei, Doctoral Dissertation in Geology and Mineralogy (Moscow, 2003).

  66. N. M. Chumakov, “Glacial and Ice-Free Climate in Precambrian,” in Climate during Epochs of Great Biospheric Rearrangements (Nauka, Moscow, 2004), pp. 259–270 [in Russian].

    Google Scholar 

  67. N. M. Chumakov and V. N. Sergeev, “Climatic Zoning in the Late Precambrian. Climate and Biospheric Events,” in Climate during Epochs of Great Biospheric Rearrangements (Nauka, Moscow, 2004), pp. 271–289 [in Russian].

    Google Scholar 

  68. A. V. Shchatsillo, A. N. Didenko, and V. E. Pavlov, “Paleomagnetism of Vendian Rocks in the Southwestern Siberian Platform and Paths of Apparent Motion of Pole, in Tectonics of Central Asia, Ed. by M. G. Leonov (GEOS, Moscow, 2005), pp. 237–276 [in Russian].

    Google Scholar 

  69. V. V. Yarmolyuk and V. I. Kovalenko, “Late Riphean Breakup between Siberia and Laurentia: Evidence from Intraplate Magmatism,” Dokl. Akad. Nauk 379(1), 94–98 (2001) [Dokl. Earth Sci. 379 (5), 525–528 (2001)].

    Google Scholar 

  70. V. V. Yarmolyuk, V. I. Kovalenko, I. V. Anisimova et al., “Late Riphean Alkali Granitesof the Zabhan Microcontinent: Timing of Breakdown of Rodinia and Formation of Microcontinents in the Central Asian Foldbelt,” Dokl. Akad. Nauk 420(3), 375–381 (2008) [Dokl. Earth Sci. 420 (4), 583–586 (2008)].

    Google Scholar 

  71. V. V. Yarmolyuk, V. I. Kovalenko, V. P. Kovach et al., “Early Stages of the Formation of Paleoasian Ocean: Results of Geochronological, Isotopic, and Geochemical Investigations of Late Riphean and Vendian-Cambrian Complexes of the Central Asian Foldbelt,” Dokl. Akad. Nauk 410(5), 657–662 (2006) [Dokl. Earth Sci. 411 (8), 1184–1189 (2006)].

    Google Scholar 

  72. V. V. Yarmolyuk, V. I. Kovalenko, E. B. Sal’nikova et al., “U-Pb Age of Syn- and Postmetamorphic Granitoids in South Mongolia: Evidence for the Presence of Grenvillides in the Central Asian Foldbelt,” Dokl. Akad. Nauk 404(1), 84–89 (2005) [Dokl. Earth Sci. 404 (7), 986–990 (2005)].

    Google Scholar 

  73. V. V. Yarmolyuk, V. I. Kovalenko, E. B. Sal’nikova et al., “Late Riphean Rifting and Breakdown of Laurasia: The Data of Geochronological Study of Alkaline Ultramafic Complexes in the Southern Framework of the Siberian Platform,” Dokl. Akad. Nauk 404(3), 400–406 (2005) [Dokl. Earth Sci. 404 (7), 1031–1036 (2005)].

    Google Scholar 

  74. V. V. Yarmolyuk, V. I. Kovalenko, V. P. Kovach et al., “Early Stages of the Formation of the Paleoasian Ocean: Results of Geochronological, Isotopic, and Geochemical Studies of Late Riphean-Early Paleozoic Igneous Complexes in the Southern Siberia and Central Asian Foldbelt,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent) (Inst. Earth Crust, Siberian Branch, Russian Acad. Sci., Irkutsk, 2004), pp. 94–96.

    Google Scholar 

  75. The Adelaide Geosyncline. Late Proterozoic Stratigraphy, Sedimentaton, Palaeontology and Tectonics, S. Australia, Compiled by W. V. Preiss (1987).

  76. S. Bogdanova, B. Bingen, R. Gorbatschev et al., “The East European Craton (Baltica) before and during the Assembly of Rodinia,” Precambrian Res. 160(1/2), 23–45 (2008).

    Article  Google Scholar 

  77. L. Cahen and N. J. Snelling, The Geochronology and Evolution of Africa (Oxford Univ. Press, 1984).

  78. P. A. Cawood, “Terra Australis Orogen: Rodinia Breakup and Development of the Pacific and Iapetus Margins of Gondwana During the Neoproterozoic and Paleozoic,” Earth-Sci. Rev. 69(3/4), 249–279 (2004).

    Google Scholar 

  79. P. A. Cawood, P. J. A. McCausland, and G. R. Dunning, “Opening Iapetus: Constraints from Laurentian Margin in Newfoundland,” Geol. Soc. Am. Bull. 113, 443–453 (2001).

    Article  Google Scholar 

  80. Y. Chen, B. Xu, S. Zhan, and Y. Li, “First Mid-Neoproterozoic Paleomagnetic Results from the Tarim Basin (NW China) and Their Geodynamic Implications,” Precambrian Res. 133(3/4), 271–281 (2004).

    Article  Google Scholar 

  81. K. W. Christie and W. F. Fahrig, “Paleomagnetism of the Borden Dykes of Baffin Island and Its Bearing on the Grenville Loop,” Can. J. Earth Sci. 20, 275–289 (1983).

    Google Scholar 

  82. A. S. Collins and S. A. Pisarevsky, “Amalgamating Eastern Gondwana: the Evolution of the Circum-Indian Orogens,” Earth-Sci. Rev. 71, 229–270 (2005).

    Article  Google Scholar 

  83. M. Deynoux, P. Fffaton, R. Trompette, and M. Villeneuve, “Pan-African Tectonic Evolution and Glacial Events Registered in Neoproterozoic to Cambrian Cratonic and Foreland Basins of West Africa,” J. African Earth Sci. 46(12), 397–426 (2006).

    Article  Google Scholar 

  84. A. Devidson, “Late Paleoproterozoic to Mid-Neoproterozoic History of Northern Laurentia: An Overview of Central Rodinia,” Precambrian Res. 160(1/2), 5–22 (2008).

    Article  Google Scholar 

  85. N. Dobrzinski and H. Bahlburg, “Sedimentology and Environmental Significance of the Cryogenian Successions of the Yangtze Platform, South China Block” (in press).

  86. P. A. Druschke and A. D. Hanson, Yan Quanren, Wang Zongqi, “Is the Bikou Terrane of the Southwest Qinling Mountains, Central China, the Result of Late Proterozoic Subduction Along the North Margin of the Yangtze Plate,” in GSA Annular Meeting Abstracts, Session 137 (Seattle, 2003), p. 343.

  87. B. Emmel, A. Jons, J. Kröner et al., “From Closure of the Mozambique Ocean to Gondwana Break-Up: New Evidence from Geochronological Data of the Vohibory Terrane, Southwest Madagascar,” J. Geol. 116, 21–38 (2008).

    Article  Google Scholar 

  88. European Lithosphere Dynamics, Ed. by D.G. Gee and R.A. Stephenson (Geol. Soc. London Mem., 2006), Vol. 32.

  89. S. A. Goldberg, J. R. Butler, and P. D. Fullager, “The Bakersville Dike Swarm: Geochronology and Petrogenesis of Late Proterozoic Basaltic Magmatism in the Southern Appalachian Blue Ridge,” Amer. J. Sci. 286(5), 403–430 (1986).

    Google Scholar 

  90. H. Hyodo, D. J. Dunlop, and M. O. McWilliams, “Timing and Extent of Grenvillian Overprinting Near Temagami,” Geol. Soc. Can. Spec. Pap. 31, 119–126 (1986).

    Google Scholar 

  91. E. Irving, J. K. Park, and J. L. Roy, “Paleomagnetism and the Origin of the Grenville Front,” Nature 236, 344–346 (1972).

    Article  Google Scholar 

  92. J. Jacobs, S. Pisarevsky, R. J. Thomas, and T. Becker, “The Kalahari Craton During the Assembly and Dispersal of Rodinia,” Precambrian Res. 160(1/2), 142–158 (2008).

    Article  Google Scholar 

  93. E. V. Khain, E. V. Bibikoba, E. B. Salnikova et al., “The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic: New Geochronologic Data and Palaeotectonic Reconstructions,” Precambrian Res. 122, 329–358 (2003).

    Article  Google Scholar 

  94. T. N. Kheraskova, A. N. Didenko, V. A. Bush, and Yu. A. Volosh, “The Vendian-Early Paleozoic History of the Continental Margin of Eastern Paleogondwana, Paleoasian Ocean, and Central Asian Foldbelt,” Russian J. Earth Sci. 5(3), 165–184 (2003) (URL: http://tjes.wdcb.ru/v05/tje03123.htm).

    Article  Google Scholar 

  95. N. B. Kuznetsov, A. A. Soboleva, O. V. Udoratina, et al., “Pre-Ordovician Tectonic Evolution and Volcano-Plutonic Associations of the Timanides and Northern Pre-Uralides, Northeast Part of the East European Craton,” Gondwana Res. 12, 305–323 (2007).

    Article  Google Scholar 

  96. T. E. Krogh, D. F. Strong, S. J. O’Brien, and V. S. Papezik, “Precise U-Pb Zircon Dates from the Avalon Terrane in Newfoundland,” Can. J. Earth Sci. 25, 442–453 (1988).

    Google Scholar 

  97. A. Kröner and U. Cordani, “African, Southern Indian and South American Cratons Were not Part of the Rodinia Supercontinent: Evidence from Field Relationships and Geochronology,” Tectonophysics 375, 325–352 (2003).

    Article  Google Scholar 

  98. Z. X. Li, S. V. Bogdanova, A. S. Collins et al., “Assembly, Configuration, and Break-up History of Rodinia: a Synthesis,” Precambrian Res. 160(1/2), 179–210 (2008).

    Article  Google Scholar 

  99. Z. X. Li, S. V. Bogdanova, A. S. Collins et al., “The Geodinamic Map of Rodinia: a Synthesis,” Precambrian Res. 160(1/2), 179–210 (2008).

    Article  Google Scholar 

  100. Z. X. Li and A. McPowell, “An Outline of the Palaeogeographic Evolution of Australian Region Since the Beginning of the Neoproterozoic,” Earth-Sci. Rev. 53, 237–277 (2001).

    Article  Google Scholar 

  101. H. Lu, H. Li, Ch. Zhang, and G. Niu, “Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments,” Precambrian Res. 160(1/2), 94–107 (2008).

    Article  Google Scholar 

  102. J. G. Meert, T. H. Torsvik, E. A. Eide, and S. Dahlgren, “Tectonic Significance of the Fen Province, South Norway: Constraints from Geochronology and Paleomagnetism,” J. Geol. 106, 553–564 (1998).

    Article  Google Scholar 

  103. J. G. Meert and T. H. Torsvik, “The Making and Unmaking of a Supercontinent: Rodinia Revisited,” Tectonophysics 375, 261–288 (2003).

    Article  Google Scholar 

  104. J. G. Meert and R. Van der Voo, “The Neoproterozoic (1000–540 Ma) Glacial Intervals: no More Snowball Earth?,” Earth Planet. Sci. Lett. 123, 1–13 (1994).

    Article  Google Scholar 

  105. J. G. Meert and T. H. Torsvik, “The Making and Unmaking of a Supercontinent: Rodinia Revisited,” Tectonophysics 375, 261–288 (2003).

    Article  Google Scholar 

  106. G. Murthy, C. Gower, M. Turrett, and R. Patzold, “Paleomagnetism of the Eocambrian Long Range Dykes and Double Mer Formation from Labrador, Canada,” Can. J. Earth Sci. 29, 1224–1234 (1992).

    Google Scholar 

  107. J. K. Park, “Analysis of Multicomponent Magnetization of the Little Dal Group, Mackenzie Mountains, Northwest Territories Canada,” J. Geophys. Res. 86, 5134–5146 (1981a).

    Article  Google Scholar 

  108. J. K. Park, “Paleomagnetism of Basic Intrusions from the Brock Inlier, Northwest Territories, Canada,” Can. J. Earth Sci. 18, 1637–1641 (1981b).

    Google Scholar 

  109. L. J. Pesonen, T. H. Torsvik, S. A. Elming, and G. Bylund, “Crustal Evolution of Fennoscandia: Palaeomagnetic Constraints,” Tectonophysics 162, 27–49 (1989).

    Article  Google Scholar 

  110. K. T. Pickering and A. Smith, “Arcs and Backarc Basins in the Early Paleozoic Iapetus Ocean,” The Island Arc 4(1), 1–67 (1995).

    Article  Google Scholar 

  111. S. A. Pisarevsky, “New Edition of the Global Paleomagnetic Database,” EOS Trans. AGU 86, 170 (2005).

    Article  Google Scholar 

  112. S. A. Pisarevsky and G. Bylund, “Palaeomagnetism of a Key Section of the Protogine Zone, Southern Sweden,” Geophys. J. Int. 133, 185–200 (1998).

    Article  Google Scholar 

  113. R. P. E. Poorter, “Paleomagnetism of the Rogaland Precambrian (Southwestern Norway),” Phys. Earth Planet. Inter. 5, 167–176 (1972).

    Article  Google Scholar 

  114. V. Popov, A. Iosifidy, A. Khramov et al., “Palaeomagnetism of Upper Vendian Sediments from the Winter Coast, White Sea Region, Russia: Implications for the Palaeogeography of the Baltica During Neoproterozoic Time,” J. Geophys. Res. 107(11), 2315 (2002).

    Article  Google Scholar 

  115. V. V. Popov, A. N. Khramov, and V. Bachtadse, “Palaeomagnetism, Magnetic Stratigraphy, and Petromagnetism of the Upper Vendian Sedimentary Rocks in the Sections of the Zolotitsa River and in the Verkhotina Hole, Winter Coast of the White Sea, Russia,” Russian J. Earth Sci. 7(2), 1–29 (2005).

    Google Scholar 

  116. W. V. Preiss, “The Adelaide Geosyncline of South Australia and Its Significance in Neoproterozoic Continental Reconstruction,” Precambrian Res. 100(1), 21–63 (2000).

    Article  Google Scholar 

  117. A. V. Shatsillo, A. N. Didenko, and V. E. Pavlov, “Two Competing Paleomagnetic Directions in the Late Vendian: New Data for the SW Region of the Siberian Platform,” Russian J. Earth Sci. 7(4) (2005).

  118. A. V. Shatsillo, V. E. Pavlov, and A. N. Didenko, “Paleomagnetism of Vendian Rocks in the Southwest of the Siberian Platform,” Russian J. Earth Sci. 8, ES2003 (2006).

    Google Scholar 

  119. J. J. Schwartz and L. P. Gromet, “Neoproterozoic-Early Cambrian Calc-Alkaline Magmatism in the Eastern Sieras Pampenas. Argentina: U-Pb Zircon and Isotopic Constraints” in GSA Annular Meeting Abstracts, Session 137 (Seattle, 2003), p. 345.

  120. R. P. Tollo and F. E. Hutson, “700 Ma Rift Event in the Blue Ridge Province of Virginia: a Unique Time Constraint on Pre-Iapetan Rifting of Laurentia,” Geology 24(1), 59–62 (1996).

    Article  Google Scholar 

  121. T. H. Torsvik, “The Rodinia Jigsaw Puzzle,” Science 300, 1379–1381 (2003).

    Article  Google Scholar 

  122. T. H. Torsvik, L. M. Carter, L. D. Ashwal et al., “Rodinia Refined or Obscured: Palaeomagnetism of the Malani Suite (NW India),” Precambrian Res. 108(3), 319–333 (2001).

    Article  Google Scholar 

  123. R. Van der Voo, “The Reliability of Paleomagnetic Data,” Tectonophysics 184, 1–9 (1990).

    Article  Google Scholar 

  124. R. Van der Voo and J. G. Meert, “Late Proterozoic Paleomagnetism and Tectonic Models: a Critical Appraisal,” Precambrian Res. 53, 149–163 (1991).

    Article  Google Scholar 

  125. A. B. Weil and R. Van der Voo, C. MacNiocaill, and J.G. Meert, “The Proterozoic Supercontinent Rodinia: Paleomagnetically Derived Reconstructions for 1100 to 800 Ma,” Earth Planet. Sci. Lett. 154, 13–24 (1998).

    Article  Google Scholar 

  126. R. E. Zartman, “Three Decades of Geochronologic Studies in the New England Appalachians,” Geology 100, 1168–1180 (1988).

    Google Scholar 

  127. Zheng Yong-Fei, Wu Yuan-Bao, Chen Fu-Kun, and Gong Bing, “Neoproterozoic Rift-Magmatism of South China Block Response to the Rodinia,” in GSA Annular Meeting Abstracts, Session 137 (Seattle, 2003), p. 343.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Kheraskova.

Additional information

Original Russian Text © T.N. Kheraskova, V.A. Bush, A.N. Didenko, S.G. Samygin, 2010, published in Geotektonika, 2010, Vol. 44, No. 1, pp. 5–28.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kheraskova, T.N., Bush, V.A., Didenko, A.N. et al. Breakup of Rodinia and early stages of evolution of the Paleoasian ocean. Geotecton. 44, 3–24 (2010). https://doi.org/10.1134/S0016852110010024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852110010024

Keywords

Navigation