Skip to main content
Log in

Tectonic evolution of the Iceland region, North Atlantic

  • Published:
Geotectonics Aims and scope

Abstract

Major hypotheses on the formation of the Iceland region are considered. It is noted that plate- and plume-tectonic genesis is the most substantiated hypothesis for this region. Model estimations of the effect of hot plume on the formation of genetically different oceanic ridges are obtained. Computer calculations are performed for the thermal subsidence rate of aseismic ridges (Ninetyeast and Hawaiian-Emperor) in the asthenosphere of the Indian and Pacific oceans. Comparative analysis of the calculated subsidence rates of these ridges with those in the Iceland region (Reykjanes and Kolbeinsey ridges) is performed. The results suggest that the thermophysical processes of formation of the spreading Reykjanes and Kolbeinsey ridges were similar to those of the aseismic Ninetyeast and Hawaiian-Emperor ridges: the genesis of all these ridges is related to the functioning of a hotspot. Analysis of the heat flux distribution in the Iceland Island and Hawaiian Rise areas is carried out. Analysis and numerical calculations indicate that the genesis of Iceland was initially characterized by the plume-tectonic transformation of a continental rather than oceanic lithosphere. The level of geothermal regime near Iceland was two times higher (100 mW/m2) relative to the Hawaiian Rise area (50 mW/m2) because the average lithosphere thickness of the Reykjanes and Kolbeinsey ridges near the Iceland was approximately two times less (40 km) relative to the thickness of the Pacific Plate (80 km) in the Hawaiian area. The main stages of evolution of the Iceland region are based on geological and geothermal data and numerical thermophysical modeling. The Cenozoic tectonic evolution of the region is considered. Paleogeodynamic reconstructions of the North Atlantic in the hotspot system at 60, 50, and 20 Ma are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Byakov and V. G. Kaz’min, “Longitudinal Variations of the Subsidence Rate over the Flanks of the Mid-Atlantic Ridge in the Central Atlantic,” Okeanologiya 42(3), 434–441 (2002) [Oceanology 42 (3), 414–421 (2002)].

    Google Scholar 

  2. E. V. Verzhbitsky, Measuriment Systems for the Geophysical Investigations in Ocean (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  3. E. V. Verzhbitsky, Geothermal Regime and Tectonics of Offshore Bottom along the Alpine-Himalayan Belt (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  4. E. V. Verzhbitsky, “Geothermal Regime and Origin of the Ninetyeast and Chagos-Laccadive Ridges,” Okeanologiya 38(2), 270–279 (1998) [Oceanology 38 (2), 244–252 (1998)].

    Google Scholar 

  5. E. V. Verzhbitsky, “Geothermal Regime and the Age of the Oceanic and Continental Lithosphere (a Case of the Ionian and Adriatic Basins of the Mediterranean Sea),” Okeanologiya 41(1), 132–137 (2001) [Oceanology 41 (1), 127–132 (2001)].

    Google Scholar 

  6. E. V. Verzhbitsky, A. Ya. Golmshtok, and O. G. Sorokhtin, “Relationship between Heat Flow and Composition of Oceanic Lithosphere,” Geotektonika 29(1), 74–80 (1994).

    Google Scholar 

  7. E. V. Verzhbitsky, M. V. Kononov, A. F. Byakov, and V. P. Dulub, “Genesis of the Hawaiian and Emperor Ridges in the Pacific Ocean,” Dokl. Akad. Nauk 403(3), 399–404 (2005) [Dokl. Earth Sci. 403A (6), 886–890 (2005)].

    Google Scholar 

  8. E. V. Verzhbitsky, M. V. Kononov, A. F. Byakov, and V. P. Dulub, “Evolution of the Lithosphere of the Hawaiian-Emperor Seamount Chain, Pacific Ocean, as Inferred from Geophysical Data,” Geotektonika 40(6), 73–89 (2006) [Geotectonics 40 (6), 467–480 (2006)].

    Google Scholar 

  9. E. V. Verzhbitsky, L. I. Lobkovsky, M. V. Kononov, et al., “Genesis of Shatsky and Hess Oceanic Rises in the Pacific Ocean as Deduced from Geologic-Geophysical Data and Numerical Modeling,” Geotektonika 40(3), 82–93 (2006) [Geotectonics 40 (3), 236–245 (2006)].

    Google Scholar 

  10. E. V. Verzhbitsky and Yu. P. Neprochnov, “Deep Structure of the Central Indian Ocean Inferred from Geophysical Data,” Geotektonika 39(3), 53–65 (2005) [Geotectonics 39 (3), 213–223 (2005)].

    Google Scholar 

  11. Yu. S. Genshaft and A. Ya. Saltykovsky, Iceland: Deep Structure and Intrusive Magmatism (Geos, Moscow, 1999) [in Russian].

    Google Scholar 

  12. N. I. Gurevich and S. A. Merkur’ev, “Relationship between Evolution of the Podvodnikov and Makarov Basins and Evolution of the Alpha Ridge Region,” Ross. Geofiz. Zh., No.1, 23–33 (2007).

    Google Scholar 

  13. K. S. Carslou and J. C. Jager, Conduction of Heat in Solids (Oxford Univ. Press, London, 1959; Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  14. International Geologic-Geophysical Atlas of the Atlantic Ocean, Ed. by G. B. Udintsev (IOC UNESCO, Moscow, 1989–1990) [in Russian].

    Google Scholar 

  15. E. G. Mirlin, “Movements and Deformations of the Lithospheric Plate in Iceland Region of the Northern Atlantic and Genesis of the Faeroe-Greenland Threshold,” Geotektonika 13(6), 78–92 (1978).

    Google Scholar 

  16. E. G. Mirlin, V. R. Melikhov, and T. Utwater, “Anomalies of Magnetic Field,” in Iceland and Mid-Oceanic Ridge, Ed. by V. V. Belousov and G. B. Udintsev (1977), pp. 74–88 [in Russian].

  17. E. G. Mirlin, K. V. Popov, and D. L. Finger, “Age of the Oceanic Floor in the Iceland Region,” Okeanologiya 19(6), 1052–1058 (1979).

    Google Scholar 

  18. B. G. Polyak, V. I. Kononov, and M. D. Khutorskoi, “Heat Flow and Structure of the Iceland Lithosphere in the Light of New Data,” Geotektonika 19(1), 111–119 (1984).

    Google Scholar 

  19. B. G. Polyak and Ya. B. Smirnov, “Relationship between Deep Heat Flow and Tectonic Structure of Continents,” Geotektonika 3(4), 3–19 (1968).

    Google Scholar 

  20. Rift Zone of the Reykjanes Ridge, Ed. by A. P. Lisitsin and L. P. Zonenshain (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  21. V. I. Khain and P. A. Chekhovich, “Main Stages of the Tectonic Evolution of the Caspian Region,” in International Tectonic Map of the Caspian Sea and Its Framework. Explanatory Notes, Ed. by V. E. Khain and N. A. Bogdanov (Nauchnyi Mir, Moscow, 2003), pp. 66–76 [in Russian].

    Google Scholar 

  22. A. A. Shreider, “Linear Magnetic Anomalies of the Arctic Ocean,” Okeanologiya 44(5), 721–729 (2004) [Oceanology 44 (5), 721–729 (2004)].

    Google Scholar 

  23. S. G. Archer, S. C. Bergman, J. Iliffe, C. M. Murphy, and M. Thornton, “Paleogene Igneous Rocks Reveal New Insights into the Geodynamic Evolution and Petroleum Potential of the Rockall Trough, NE Atlantic Margin,” Bas. Res. 17(1), 171–201 (2005).

    Article  Google Scholar 

  24. M. Beblo, A. Bjornsson, K. Arnason, et al., “Electrical Conductivity beneath Iceland—Constraints Imposed by Magnetotelluric Results on Temperature, Partial Melt Crust, and Mantle Structure,” J. Geophys. Res. 53(B1), 16–23 (1983).

    Google Scholar 

  25. H. Becker, “Magnetic Anomalies (AZ) in NE-Iceland and Their Interpretation Based on Rock-Magnetic Investigations,” Geophys. J. Int. 47(1–3), 43–56 (1980).

    Google Scholar 

  26. I. Bjarnason, W. Menke, O. Flovens, et al., “Tomographic Image of the Mid-Atlantic Plate Boundary in South Iceland,” J. Geophys. Res. 98(B4), 6607–6622 (1993).

    Article  Google Scholar 

  27. R. L. Carlson and H. P. Johnson, “On Modeling the Thermal Evolution of the Oceanic Upper Mantle: An Assessment of Cooling Plate Model,” J. Geophys. Res. 99(B2), 3201–3214 (1994).

    Article  Google Scholar 

  28. J. A. Chalmers, L. M. Larsen, and A. K. Pedersen, “Widespread Palaeocene Volcanism around the Northern North Atlantic and Labrador Sea: Evidence for a Large, Hot, Early Plume Head,” J. Geol. Soc. 152, 965–969 (1995).

    Google Scholar 

  29. L. M. Chambers and M. S. Pringle, “Age and Duration of Activity at the Isle of Mull Tertiary Igneous Centre, Scotland, and Confirmation of the Existence of Subcrones during Anomaly 26 Myr,” Earth Planet. Sci. Lett. 193, 333–345 (2001).

    Article  Google Scholar 

  30. P. D. Clift, A. Carter, and A. J. Hurford, “The Erosion and Uplift History of NE Atlantic Passive Margins: Constraints on a Passing Plume,” J. Geol. Soc. 155, 787–800 (1998).

    Article  Google Scholar 

  31. A. P. Dickin, “The North Atlantic Tertiary Province,” in Continental Flood Basalt, Ed. by J. D. Macdougall (Kluwer Academic, Hingham, 1988), pp. 111–149.

    Google Scholar 

  32. A. P. Dickin and N. W. Jones, “Isotopic Evidence for the Age of Pitchstones and Felsites, Isle of Eigg, NW Scotland,” J. Geol. Soc. 140, 691–700 (1983).

    Article  Google Scholar 

  33. O. Eldholm and K. Grue, “North Atlantic Volcanic Margins: Dimensions and Production Rates,” J. Geophys. Res. 99(B2), 2955–2968 (1994).

    Article  Google Scholar 

  34. O. Eldholm, J. Thiede, E. Taylor, et al., Proceedings of Ocean Drill. Program Initial Rep. (1987), Vol. 104.

  35. R. B. Faerseth and T. Lien, “Cretaceous Evolution in the Norwegian Sea: A Period Characterized by Tectonic Quiescence,” Marin Petrol. Geol. 19, 1005–1027 (2002).

    Article  Google Scholar 

  36. O. G. Flovens, “Seismic Structure of the Iceland Crust above Layer Three and the Relation between Body Wave Velocity and the Alteration of the Basaltic Crust,” J. Geophys. 47(1–3), 211–220 (1980).

    Google Scholar 

  37. G. R. Foulger, “Older Crust Underlies Iceland,” Geophys. J. Int. 165, 672–776 (2006).

    Article  Google Scholar 

  38. G. R. Foulger, Z. Du, and B. R. Julian, “Icelandic-Type Crust,” Geophys. J. Int. 155, 567–590 (2003).

    Article  Google Scholar 

  39. C. Gaina, Roest, and R. D. Müller, “Late Cretaceous-Cenozoic Deformation of Northeast Asia,” Earth Planet. Sci. Lett. 197, 273–286 (2002).

    Article  Google Scholar 

  40. J. A. Gamble, R. J. Wysoczanski, and I. G. Meighan, “Constraints on the Age of the British Tertiary Volcanic Province from Ion Microprobe U-Pb (SHRIMP) Ages for Acid Igneous Rocks from NE Ireland,” J. Geol. Soc. 156, 291–299 (1999).

    Article  Google Scholar 

  41. M. A. Hamilton, D. G. Pearson, R. N. Thompson, et al., “Rapid Eruption of Skye Lavas Inferred from Precise U-Pb and Ar-Ar Dating of the Rum and Cuillin Plutonic Complexes,” Nature 394, 260–262 (1998).

    Article  Google Scholar 

  42. J. Havskov, L. B. Kvamme, and H. Bungum, “Attenuation of Seismic Waves in the Jan Mayen Island Area,” Mar. Geophys. Res. 8(1), 39–47 (1986).

    Article  Google Scholar 

  43. M. M. Hirsman, P. R. Renne, and A. R. McBirney, “40Ar-39Ar Dating of the Skaergaard Intrusion,” Earth Planet. Sci. Earth, Lett. 146, 645–658 (1997).

    Article  Google Scholar 

  44. K. Hitchen, “The Geology of the UK Hatton-Rockall Margin,” Mar. Pet. Geol 21(8), 993–1012 (2004).

    Article  Google Scholar 

  45. W. S. Holdbroook, H. C. Larsen, J. Korenaga, et al., “Mantle Thermal Structure and Active Upwelling during Continental Breakup in the North Atlantic,” Earth Planet. Sci. Lett. 190, 251–266 (2001).

    Article  Google Scholar 

  46. A. Hoskuldsson, R. Hey, E. Kjartansson, et al., “The Reykjanes Ridge between 63°10′ N and Iceland,” J. Geodynamics 43, 73–86 (2007).

    Article  Google Scholar 

  47. W. R. Jacoby, W. Weigel, and T. Fedorova, “Crustal Structure of the Reykjanes Ridge near 62° N on the Basis of Seismic Refraction and Gravity Data,” J. Geodynam. 43, 55–72 (2007).

    Article  Google Scholar 

  48. S. M. Jones, “Test of Ridge-Plume Interaction Model Using Oceanic Crustal Structure around Iceland,” Earth Planet. Sci. Lett. 208, 205–218 (2003).

    Article  Google Scholar 

  49. W.-Y. Jung and P. R. Vogt, “A Gravity and Magnetic Study of the Extinct Aegir Ridge, Norwegian Sea,” J. Geophys. Res. 102, 5065–5089.

  50. J. A. Keeton, R. C. Searle, B. Parsons, et al., “Bathymetry of the Reykjanes Ridge,” Marine Geophys. Res. 19, 55–64 (1997).

    Article  Google Scholar 

  51. K. D. Klitgord and H. Schouten, “Plate Kinematics of the Central Atlantic,” in Geology of North America. The Western North Atlantic Region, Ed. by P. R. Vogt and B. E. Tucholke (Geol. Soc. Am., Boulder, 1986), pp. 351–378.

    Google Scholar 

  52. S. Kodaira, R. Mjelde, K. Gunnarsson, et al., “Crustal Structure of the Kolbeinsey Ridge, North Atlantic Obtained by Use of Ocean Bottom Seismographs,” J. Geophys. Res. 102, 3131–3151 (1997).

    Article  Google Scholar 

  53. S. Kodaira, R. Mjelde, K. Gunnarsson, et al., “Evolution of Oceanic Crust on the Kolbeinsey Ridge, North of Iceland over the Past 22 Myr,” Terra Nova 10(1), 27–31 (1998).

    Article  Google Scholar 

  54. B. Kuvaas and S. Kodaira, “The Formation of the Jan Mayen Microcontinent: the Missing Piece in the Continental Puzzle between the More-Voring Basins and East Greenland,” First Break 15(7), 239–247 (1997).

    Google Scholar 

  55. S. Le Douran and B. Parsons, “A Note on the Correction of Ocean Floor Depth for Sediment Loading,” J. Geophys. Res. 87, 4715–4722 (1982).

    Article  Google Scholar 

  56. X. Lenoir, G. Ferraud, and L. Geoffroy, “High-Rate Flexure of the East Greenland Volcanic Margin: Constraints from 40Ar/39Ar Dating of Basaltic Dykes,” Earth Planet. Sci. Lett. 214, 515–528 (2003).

    Article  Google Scholar 

  57. R. Mjelde, P. Digranes, H. Shimamura, et al., “Crustal Structure of the Northern Part of the Voring Basin, Mid-Norway Margin, from Wide-Angle Seismic and Gravity Data,” Tectonophysics 293, 175–205 (1998).

    Article  Google Scholar 

  58. W. J. Morgan, “Hotspot Tracks and the Early Rifting of the Atlantic,” Tectonophysics 94, 123–139 (1983).

    Article  Google Scholar 

  59. A. C. Morton, K. Hitchen, J. D. Ritchie, et al., “Late Cretaceous Basalts from Rosemary Bank, Northern Rockall Trough,” J. Geol. Soc. 152(6), 947–952 (1995).

    Google Scholar 

  60. R. D. Muller, J. Y. Royer, and L. A. Lawer, “Revised Plate Motions Relative to the Hotspots from Combined Atlantic and Indian Ocean Hotspot Tracks,” Geology 21(3), 275–278 (1993).

    Article  Google Scholar 

  61. A. E. Mussett, “British Tertiary Igneous Province Probably not Associated with East Greenland Lavas,” Nature 284, 376–377 (1980).

    Article  Google Scholar 

  62. A. E. M. Nair and M. Churkin, Jr., The Ocean Basins and Margins. Vol. 5. The Arctic Ocean (Plenum Press, London, 1981), pp. 493–598.

    Google Scholar 

  63. C. O’Neil, D. Muller, and B. Steinberger, “On the Uncertainties in Hot Spot Reconstructions and the Significance of Moving Hot Spot Reference Frames,” Geochem., Geophys., Geosystems 6(4), (2005) (Q04003, doi: 10.1029/2004GC000784).

  64. G. Palmason, S. Arnorsson, I. B. Fieldleifsson, et al., “The Iceland Crust: Evidence from Drill Hole Data on Structure and Processes,” in Deep Drilling Results in the Atlantic Ocean: Oceanic Crust. Maurice Ewing Series (AGU, Wash., 1979), Vol. 2, pp. 43–65.

    Google Scholar 

  65. B. Parsons and J. C. Sclater, “An Analysis of the Variation of Ocean Floor Bathymetry and Heat Floor with Age,” J. Geophys. Res. 82(5), 803–827 (1977).

    Article  Google Scholar 

  66. N. I. Pavlenkova and S. M. Zverev, “Seismic Model of Iceland Crust,” Geol. Rundshau 70(1), 271–281 (1981).

    Article  Google Scholar 

  67. D. G. Pearson, C. H. Emeleus, and S. P. Kelley, Precise 40 Ar/ 39 Ar Age for the Initiation of Igneous Activity in the Small Isles, Inner Hebrides and Implications for the Timing of Magmatism in the British Tertiary Volcanic Province (J. Geol. Soc., London, 1996), Vol. 153, pp. 815–818.

    Google Scholar 

  68. R. R. Richardson, J. R. Smallwood, R. S. White, et al., “Crustal Structure beneath the Faeroe Island Ridge,” Tectonophysics 300, 159–180 (1998).

    Article  Google Scholar 

  69. P. Riisager, J. Riisager, N. Abrahamsen, et al., “New Paleomagnetic Pole and Magnetostratigraphy of Faeroe Islands Flood Volcanics, North Atlantic Igneous Province,” Earth Planet. Sci. Lett. 201, 261–276 (2002).

    Article  Google Scholar 

  70. J. Riisager, P. Riisager, and A. K. Pedersen, “Paleomagnetism of Large Igneous Provinces: Case Study from West Greenland, North Atlantic Igneous Province,” Earth Planet. Sci. Lett. 214, 409–425 (2003).

    Article  Google Scholar 

  71. D. G. Roberts, J. Backman, J. W. Morton, et al., Initial Rep. Deep Sea Drill. Project (1984), Vol. 81.

  72. W. R. Roest and S. P. Srivastava, “Sea-Floor Spreading in the Labrador Sea; a New Reconstruction,” Geology 17(11), 1000–1003 (1989).

    Article  Google Scholar 

  73. S. Th. Rognvaldsson, G. Gudmundsson, K. Agustsson, et al., “Recent Seismicity near the Heingil Triple Junction, SW Iceland,” in Seismology in Europe. Papers Presented at the 25 Gen. Assembly (Reykjavik, 1996), pp. 461–466.

  74. K. Saemundsson, “On Outline of the Structure of SW-Iceland,” in Iceland and Mid-Oceanic Ridges Vis. Isl. 38, 151–161 (1967).

    Google Scholar 

  75. J. G. Schilling, “Iceland Mantle Plume,” Nature 242(5400), 565–571 (1973).

    Article  Google Scholar 

  76. C. W. Sinton and R. A. Duncan, “40Ar-39Ar Ages of Lavas from the Southeast Greenland Margin, ODP Leg 152, and the Rockall Plateau, DSDP Leg 181,” in Proc. ODP Sci. Results, Ed. by A. D. Saunders, H. C. Larsen, and Wise S.W., Jr. (1998), Vol. 152, pp. 387–402.

  77. J. R. Smallwood and R. S. White, “Crustal Accretion at the Reykjanes Ridge, 61–62°N,” J. Geophys. Res. 103(B3), 5185–5201 (1998).

    Article  Google Scholar 

  78. B. Steinberger and C. Gaina, “Plate-Tectonic Reconstructions Predict Part of the Hawaiian Hotspot Track to Be Preserved in the Bering Sea,” Geology 35(5), 407–410 (2007).

    Article  Google Scholar 

  79. M. Storey, R. A. Duncan, H. C. Larsen, et al., “Impact and Rapid Flow of the Iceland Plume beneath Greenland at 61 Ma,” in EOS Trans. AGU Fall Meet. (1996), Suppl. 77.

  80. M. Storey, R. A. Duncan, A. K. Pedersen, et al., “40Ar-39Ar Geochronology of the West Greenland Tertiary Volcanic Province,” Earth Planet. Sci. Lett. 160, 569–586 (1998).

    Article  Google Scholar 

  81. F. M. Stuart, R. M. Ellam, P. J. Harrop, et al., “Constraints on Mantle Plumes from the Helium Isotopic Composition of Basalts from the British Tertiary Igneous Province,” Earth Planet. Sci. Lett. 177, 273–285 (2000).

    Article  Google Scholar 

  82. M. Talwani, C. C. Windisch, and M. G. J. Langseth, “Reykjanes Ridge Crest: A Detailed Study,” J. Geophys. Res. 76, 473–517 (1971).

    Article  Google Scholar 

  83. R. N. Taylor, M. F. Thirwall, B. J. Murton, et al., “Isotopic Constraints on the Influence of the Icelandic Plume,” Earth Planet. Sci. Lett. 148(1/2), E1–E8 (1997).

    Article  Google Scholar 

  84. C. Tegner, R. A. Duncan, S. Bernstein, et al., “40Ar-39Ar Geochronology of Tertiary Mafic Intrusions along the East Greenland Rifted Margin: Relations to Flood Basalts and the Iceland Hotspot Track,” Earth Planet. Sci. Lett. 156, 75–88 (1998).

    Article  Google Scholar 

  85. T. H. Torsvik and L. R. M. Cocks, “Norway in Space and Time: A Centennial Cavalcade,” Norw. J. Geol. 85, 73–86 (2005).

    Google Scholar 

  86. E. V. Verzhbitsky, “Geothermal Regime and Genesis of the Ninety-East and Chagos-Laccadive Ridges,” J. Geodynam. 35, 289–302 (2003).

    Article  Google Scholar 

  87. P. R. Vogt, R. K. Perry, R. H. Feden, et al., “The Greenland-Norwegian Sea and Iceland Environment: Geology and Geophysics,” in The Ocean Basins and Margins. Vol. 5: The Arctic Ocean. Ed. by A. E. M. Nair and M. Churkin, Jr. (New York, 1981), pp. 493–598.

  88. R. Waagstein, “Structure, Composition and Age of the Faeroe Basalt Plateau,” in Early Tertiary Volcanism and the Opening of the North-East Atlantic, Ed. by L. Parsons and A. C. Morton (Geol. Soc. London Spec. Publ., 1988), Vol. 39, pp. 225–238.

  89. P. G. L. Walker, “Eruptive Mechanism in Iceland,” in Geodynamics of Iceland and the North Atlantic Area (Reidel, Dirdrecht, 1974), pp. 189–202.

    Google Scholar 

  90. N. R. W. Weir, R. S. White, B. Brandsdottir, et al., “Crustal Structure of the Northern Reykjanes Ridge and Reykjanes Peninsula, Southwest Iceland,” J. Geophys. Res. 106(B4), 6347–6368 (2001).

    Article  Google Scholar 

  91. R. S. White, “Crustal Structure and Magmatism of North Atlantic Continental Margins,” J. Geol. Soc. 149, 841–854 (1992).

    Article  Google Scholar 

  92. R. S. White and D. P. McKenzie, “Magmatism at Rift Zones: The Generation of Volcanic Continental Margins and Flood Basalts,” J. Geophys. Res. 94, 7685–7729 (1989).

    Article  Google Scholar 

  93. R. S. White and D. McKenzie, “Mantle Plume and Flood Basalts,” J. Geophys. Res. 100(B9), 17543–17585 (1995).

    Article  Google Scholar 

  94. C. J. Wolfe, I. Th. Bjarnason, and J. C. VanDecar, et al., “Seismic Structure of the Iceland Mantle Plume,” Nature 385(6613), 245–247 (1997).

    Article  Google Scholar 

  95. M. Wyss, “Hawaiian Rifts and Recent Icelandic Volcanism: Expression of Plume Taylor Generated Radial Stress Field,” J. Geophys. 47(1–3), 19–22 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.V. Verzhbitsky, M.V. Kononov, A.F. Byakov, O.V. Grinberg, 2009, published in Geotektonika, 2009, No. 6, pp. 70–92.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verzhbitsky, E.V., Kononov, M.V., Byakov, A.F. et al. Tectonic evolution of the Iceland region, North Atlantic. Geotecton. 43, 501–521 (2009). https://doi.org/10.1134/S0016852109060041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852109060041

Keywords

Navigation