Skip to main content
Log in

The Late Cenozoic geodynamic evolution of the central segment of the Andean subduction zone

  • Published:
Geotectonics Aims and scope

Abstract

The presented model of the Late Cenozoic geodynamic evolution of the central Andes and the complex tectonic, geological, and geophysical model of the Earth’s crust and upper mantle along the Central Andean Transect, which crosses the Andean subduction zone along 21°S, are based on the integration of voluminous and diverse data. The onset of the recent evolution of the central Andes is dated at the late Oligocene (27 Ma ago), when the local fluid-induced rheological attenuation of the continental lithosphere occurred far back of the subduction zone. Tectonic deformation started to develop in thick-skinned style above the attenuated domain in the upper mantle and then in the Earth’s crust, creating the bivergent system of the present-day Eastern Cordillera. The destruction of the continental lithosphere is correlated with ore mineralization in the Bolivian tin belt, which presumably started at 16° S and spread to the north and to the south. Approximately 19 Ma ago, the gently dipping Subandean Thrust Fault was formed beneath the Eastern Cordillera, along which the South American Platform began to thrust under the Andes with rapid thickening of the crust in the eastern Andean Orogen owing to its doubling. The style of deformation in the upper crust above the Subandean Thrust Fault changed from thick- to thin-skinned, and the deformation front migrated to the east inland, forming the Subandean system of folds and thrust faults verging largely eastward. The thickening of the crust was accompanied by flows at the lower and/or middle crustal levels, delamination, and collapse of fragments of the lower crust and lithospheric mantle beneath the Eastern Cordillera and Altiplano-Puna Plateau. As the thickness of the middle and lower crustal layers reached a critical thickness about 10 Ma ago, the viscoplastic flow in the meridional direction became more intense. Extension of the upper brittle crust was realized mainly in gliding and rotation of blocks along a rhombic fault system. Some blocks sank, creating sedimentary basins. The rate of southward migration estimated from the age of these basins is 26 km/Ma. Tectonic deformation was accompanied by diverse magmatic activity (ignimbrite complexes, basaltic flows, shoshonitic volcanism, etc.) within the tract from the Western Cordillera to the western edge of the Eastern Cordillera 27–5 Ma ago with a peak at 7 Ma; after this, it began to recede westward; by 5 Ma ago, the magmatic activity reached only the western part of the Altiplano-Puna Plateau, and it has been concentrated in the volcanic arc of the Western Cordillera during the last 2 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. V. Romanyuk and Yu. L. Rebetsky, “Density Inhomogeneities, Tectonics, and Stresses in the 21°S Andean Subduction Zone,” Fiz. Zemli 37(2), 23–57 (2001) [Izv. Physics Solid Earth 37 (2), 120–140 (2001)].

    Google Scholar 

  2. D. V. Rundquist, A. V. Tkachev, Yu. Gatinsky, et al., Large and Superlarge Ore Deposits, Vol. 1: Global Tendencies of Localization (IGEM RAS, Moscow, 2006) [in Russian].

    Google Scholar 

  3. S. Aitcheson, R. Harmon, S. Moorbath, et al., “Pb Isotopes Define Basement Domains of the Altiplano, Central Andes,” Geology 23, 555–558 (1995).

    Article  Google Scholar 

  4. R. W. Allmendinger, “Tectonic Development, Southeastern Border of the Puna Plateau, Northwestern Argentine Andes,” Geol. Soc. Amer. Bull. 97(9), 1070–1082 (1986).

    Article  Google Scholar 

  5. R. W. Allmendinger and T. Gubbels, “Pure and Simple Shear Plateau Uplift, Altiplano-Puna, Argentina and Bolivia,” Tectonophysics 259, 1–14 (1996).

    Article  Google Scholar 

  6. R. W. Allmendinger, T. E. Jordan, M. S. Kay, and B. L. Isacks, “The Evolution of the Altiplano-Puna Plateau of the Central Andes,” Ann. Rev. Earth. Planet. Sci. 25, 139–174 (1997).

    Article  Google Scholar 

  7. R. W. Allmendinger and T. R. Zapata, “Imaging the Andean Structure of the Eastern Cordillera on Reprocessed YPF Seismic Reflection Data,” in Proceedings of XIII Congreso Geologico Argentino y III Congreso de Exploracion de Hidrocarburos (Actas II, 1996), pp. 125–134.

  8. “ANCORP Research Group. Seismic Reflection Image of the Andean Subduction Zone Reveals Offset of Intermediate-Depth Seismicity into Oceanic Mantle,” Nature 349, 341–344 (1999).

    Google Scholar 

  9. “ANCORP Working Group. Seismic Imaging of a Convergent Continental Margin and Plateau in the Central Andes (Andean Continental Research Project 1996 (ANCORP-96)),” J. Geophys. Res., 108(B7), 23–28 (2003) doi: 10.1029/2002JB001771.

  10. M. H. Anders, W. K. M. Gregory, and M. Spiegelman, “A Critical Evaluation of Late Tertiary Accelerated Uplift Rates for the Eastern Cordillera, Central Andes of Bolivia,” J. Geol. 110, 89–100 (2002).

    Article  Google Scholar 

  11. E. V. Artyushkov, N.-A. Morner, and D. L. Tarling, “The Cause of Loss of Lithospheric Rigidity in Areas Far from Plate Tectonic Activity,” Geophys. J. Int. 143, 752–776 (2000).

    Article  Google Scholar 

  12. G. Asch, B. Schurr, S. Luth, et al., “Structure and Rheology of the Upper Plate from Seismological Investigations,” in Deformation Processes in the Andes. Interaction between Endogenic and Exogenic Processes during Subduction Orogenesis. Report for the Research Period 1999–2001 (Potsdam, 2001), pp. 177–204.

  13. W. Avila-Salinas, “Petrological and Tectonic Evolution of the Cenozoic Volcanism in Bolivian Western Andes,” in Andean Magmatism and Its Tectonic Setting, Ed. by R. S. Harmon and C. W. Rapela (Geol. Soc. Amer. Spec. Paper, 1991), pp. 245–258.

  14. J. P. Avouac and E. V. Burov, “Erosion as a Driving Mechanism of Intracontinental Mountain Growth,” J. Geophys. Res. 101(B8), 17 747–17 769 (1996).

    Article  Google Scholar 

  15. A. Y. Babeyko and S. V. Sobolev, “Quantifying Different Modes of the Late Cenozoic Shortening in the Central Andes,” Geology 33(8), 621–624 (2005).

    Article  Google Scholar 

  16. P. Baby, Ph. Rochat, G. Mascle, and G. Herail, “Neogene Shortening Contribution to Crustal Thikening in the Back Arc of the Central Andes,” Geology 25(10), 883–886 (1997).

    Article  Google Scholar 

  17. H. Bahlburg and F. Herve, “Geodynamic Evolution and Tectonostratigraphic Terranes of Northwestern Argentina and Northern Chile,” Geol Soc. Amer. Bull. 109(7), 869–884 (1997).

    Article  Google Scholar 

  18. M. E. Beck, Jr., “On the Mechanism of Crustal Block Rotations in the Central Andes,” Tectonophysics 299, 75–92 (1998).

    Article  Google Scholar 

  19. S. L. Beck and G. Zandt, “The Nature of Orogenic Crust in the Central Andes,” J. Geophys. Res. 107(B10), 22–30 (2002), doi: 10.1029/2000JB000124.

    Article  Google Scholar 

  20. D. Bercovici and S.-I. Karato, “Whole-Mantle Convection and the Transition-Zone Water Filter,” Nature 425, 39–44 (2003).

    Article  Google Scholar 

  21. G. Bock, B. Schurr, and G. Asch, “High-Resolution Image of the Oceanic Moho in the Subducting Nazca Plate from P-S Converted Waves,” Geophys. Rev. Lett. 27(23), 3929–3932 (2000).

    Article  Google Scholar 

  22. H. Brasse, P. Lezaeta, K. Schwalenberg, et al., “The Bolivian Altiplano Conductivity Anomaly,” J. Geophys. Res. 107(5) (2002), doi: 10.1029/2001JB000391.

  23. T. Cahill and B. Isacks, “Seismicity and Shape of the Subducted Nazca Plate,” J. Geopys. Res. 97(B12), 17 503–17 529 (1992).

    Google Scholar 

  24. R. L. Carlson and C. N. Herrick, “Densities and Porosities in the Oceanic Crust and Their Variations with Depth and Age,” J. Geophys. Res. 95, 9153–9170 (1990).

    Article  Google Scholar 

  25. R. L. Carlson and H. P. Johnson, “On Modeling the Thermal Evolution of the Oceanic Upper Mantle: An Assessment of the Cooling Plate Model,” J. Geophys. Res. 99(B2), 3201–3214 (1994).

    Article  Google Scholar 

  26. J. Chmielowski, G. Zandt, and C. Haberland, “The Central Andean Altiplano-Puna Magma Body,” Geophys. Rev. Lett. 26(6), 783–786 (1999).

    Article  Google Scholar 

  27. T. T. Cladouhos, R. W. Allmendinger, B. Coira, and E. Farrar, “Late Cenozoic Deformation in the Central Andes: Fault Kinematics from the Northern Puna, Northwestern Argentina and Southwestern Bolivia,” J. South Amer. Earth Sci. 7(2), 209–228 (1994).

    Article  Google Scholar 

  28. M. Cloos, “Lithospheric Buoyancy and Collisional Orogenesis: Subduction of Oceanic Plateaus, Continental Margins, Island Arcs, Spreading Ridges, and Seamounts,” Geol. Soc. Amer. Bull. 105, 715–737 (1993).

    Article  Google Scholar 

  29. J. H. Davies and D. J. Stevenson, “Physical Model of Source Region of Subduction Zone Volcanics,” J. Geophys. Res. 97(B2), 2037–2070 (1992).

    Article  Google Scholar 

  30. P. G. de Celles and B. K. Horton, “Early to Middle Tertiary Foreland Basin Development and the History of Andean Crustal Shortering in Bolivia,” Geol Soc. Amer. Bull. 115(1), 58–77 (2003).

    Article  Google Scholar 

  31. S. L. de Silva, “Altiplano-Puna Complex of the Central Andes,” Geology 17, 1102–1106 (1989).

    Article  Google Scholar 

  32. C. Dorbath and F. Masson, “Composition of the Crust and Upper-Mantle in the Central Andes (19–30 S) Inferred from P-Wave Velocity and Poisson’s Ratio,” Tectonophysics 327, 213–223 (2000).

    Article  Google Scholar 

  33. T. A. Dumitru, “Effect of Subduction Parameters on Geothermal Gradients in Fore-Arcs, with an Application to Franciscan Subduction in California,” J. Geophys. Res. 96(B1), 621–641 (1991).

    Article  Google Scholar 

  34. F. Echternacht, S. Tauber, M. Eisel, et al., “Electromagnetic Study of the Active Continental Margin in Northern Chile,” Phys. Earth Planet. Int. 102, 69–87 (1997).

    Article  Google Scholar 

  35. H. Ege, E. R. Sobel, E. Scheuber, and V. Jacobshagen, “Exhumation History of the Southern Altiplano Plateau (Southern Bolivia) Constrained by Apatite Fission Track Thermochronology,” Tectonics 26(TC1004), (2007), doi: 10.1029/2005TC001869.

  36. P. Francis and C. Hawkesworth, “Late Cenozoic Rates of Magmatic Activity in the Central Andes and Their Relationships to Continental Crust Formation and Thickening,” J. Geol. Soc. London 151, 845–854 (1994).

    Article  Google Scholar 

  37. C. N. Garzione, P. Molnar, J. C. Libarkin, and B. J. MacFadden “Rapid Late Miocene Rise of the Bolivian Altiplano: Evidence for Removal of Mantle Lithosphere,” Earth Planet. Sci. Lett. 241, 543–556 (2006).

    Article  Google Scholar 

  38. M. Gerbault and J. Martinod, “Possible Orogeny-Parallel Lower Crustal Flow and Thickening in the Central Andes,” Tectonophysics 399, 59–72 (2005).

    Article  Google Scholar 

  39. T. Gerya and D. A. Yuen, “Rayleigh-Taylor Instabilities from Hydration and Melting Propel Cold Plumes” at Subduction Zones, Earth Planet. Sci. Lett. 212, 47–62 (2003).

    Article  Google Scholar 

  40. P. Giese, E. Scheuber, F. Schilling, et al., “Crustal Thickening Processes in the Central Andes and the Different Natures of the Moho Discontinuity,” J. South Amer. Earth Sci. 12, 201–220 (1999).

    Article  Google Scholar 

  41. H.-J. Goetze and A. Kirchner, “Gravity Field at the South American Active Margin (20 to 29° S),” J. South Amer. Earth Sci. 10(2), 179–188 (1997).

    Article  Google Scholar 

  42. H.-J. Goetze, B. Lahmeyer, S. Schmidt, and S. Strunk, “The Lithospheric Structure of the Central Andes (20–26 S) as Inferred from Interpretation of Regional Gravity,” in Tectonics of the Southern Central Andes, Ed. by K.-J. Reutter, E. Schenber, and P. J. Wigger (Springer, Berlin, 1994), pp. 7–21.

    Google Scholar 

  43. F. M. Graeber and G. Asch, “Three-Dimensional Models of P-Wave Velocity and P- to S-Velocity Ratio in the Central Andes by Simultaneous Inversion of Local Earthquake Data,” J. Geophys. Res. 104(B9), 20 237–20 256 (1999).

    Article  Google Scholar 

  44. K. M. Gregory-Wodzicki, “Uplift History of the Central and Northern Andes; a Review,” Geology 112, 1091–1105 (2000).

    Google Scholar 

  45. J. A. Grow and C. O. Bowin, “Evidence for High-Density Crust and Mantle beneath the Chile Trench Due to the Descending Lithosphere,” J. Geophys. Res. 80(11), 1449–1458 (1975).

    Article  Google Scholar 

  46. M.-A. Gutcher, R. Maury, J.-P. Eissen, and E. Bourdon, “Can Slab Melting Be Caused by Flat Subduction?,” Geology 28(6), 535–538 (2000).

    Article  Google Scholar 

  47. M.-A. Gutcher, W. Spakman, H. Bijwaard, and E. R. Engdahl, “Geodynamics of Flat Subduction: Seismicity and Tomographic Constraints from the Andean Margin,” Tectonics 19(5), 814–833 (2000).

    Article  Google Scholar 

  48. V. M. Hamza and M. Munoz, “Heat Flow Map of South America,” Geothermics 25(6), 599–646 (1996).

    Article  Google Scholar 

  49. A. J. Hartley, G. May, G. Chong, et al., “Development of a Continental Forearc: A Cenozoic Example from the Central Andes, Northern Chile,” Geology 28, 331–334 (2000).

    Article  Google Scholar 

  50. S. G. Henry and H. N. Pollack, “Terrestrial Heat Flow above the Andean Subduction Zone in Bolivia and Peru,” J. Geophys. Res. 93(B12), 15 153–15 162 (1988).

    Article  Google Scholar 

  51. B. K. Horton, B. A. Hampton, and G. L. Waanders, “Paleogene Synorogenic Sedimentation in the Altiplano Plateau and Implications for Initial Mountain Building in the Central Andes,” Geol. Soc. Amer. Bull. 113, 1387–1400 (2001).

    Article  Google Scholar 

  52. E. Humphreys, E. Hessler, K. Dueker, et al., “How Laramide-Age Hydration of North American Lithosphere by the Farallon Slab Controlled Subsequent Activity in the Western United States,” in The Lithosphere of Western North America and Its Geophysical Characterization, Ed. by S. L. Klemperer and W. G. Ernst (Bellwether, 2003), George A. Thompson Volume Int. Book Series, Vol.7, pp. 524–544.

  53. L. Husson and T. Sempere, “Thickening the Altiplano Crust by Gravity-Driven Crustal Channel Flow,” Geophys. Rev. Lett. 30(5), 1243–1246 (2003).

    Article  Google Scholar 

  54. B. L. Isacks, “Uplift of the Central Andean Plateau and Bending of the Bolivian Orocline,” J. Geophys. Res. 93, 3211–3231 (1988).

    Article  Google Scholar 

  55. T. E. Jordan and M. Gardeweg, “Tectonic Evolution of the Late Cenozoic Central Andes (20–30 S),” in The Evolution of the Pacific Ocean Margins, Ed. by Z. Ben-Avraham (Oxford Univ. Press, New York, 1989), pp. 193–206.

    Google Scholar 

  56. S. Kay, B. Corira, and J. Viramonte, “Young Mafic Back Arc Volcanic as Indicator of Continental Lithospheric Delaminating beneath the Argentine Puna Plateau, Central Andes,” J. Geophys. Res. 99, 24 323–24 339 (1994).

    Article  Google Scholar 

  57. S. M. Kay, C. Mpodozis, and B. Corira, “Magmatism, Tectonism, and Mineral Deposits of the Central Andes (22–33 S Latitude),” in Geology and Ore Deposits of the Central Andes Ed. by B. J. Skinner (Soc. Econ. Geol. Spec. Publ., 1999), pp. 27–59.

  58. E. Kendrick, M. Bevis, R. J. Smalley, and B. Brooks, “An Integrated Crustal Velocity Field for the Central Andes,” Geochem. Geophys. Geosystem. 2(11), (2001), doi: 10.1029/2001GC000191,2001.

  59. J. Kley, “Transition from Basement-Involved to Thin-Skinned Thrusting in the Cordillera Oriental of Southern Bolivia,” Tectonics 15(4), 763–775 (1996).

    Article  Google Scholar 

  60. J. Kley and C. R. Monaldi, “Tectonic Shortening and Crustal Thickness in the Central Andes: How Good Is the Correlation?” Geology 26(8), 723–726 (1998).

    Article  Google Scholar 

  61. J. Kley, C. R. Monaldi, and J. A. Salfity, “Along-Strike Segmentation of the Andean Foreland: Causes and Consequences,” Tectonophysics 301, 75–94 (1999).

    Article  Google Scholar 

  62. J. Kley, J. Muller, S. Tawackoli, et al., “Pre-Andean and Andean-Age Deformation in the Eastern Cordillera of Southern Bolivia,” J. Am. Earth Sci. 10, 1–19 (1997).

    Article  Google Scholar 

  63. J. Klotz, G. W. Michel, G. Khazaradze, and B. Heinze, “GPS-Based Deformation Measurements and Modeling,” in Deformation Processes in the Andes. Report for the Research Period 1999–2001 (Posdam, 2001), pp. 363–392.

  64. M. Koesters, H.-J. Goetze, S. Schmidt, et al., “Gravity Field of a Continent-Ocean Transition Mapped from Land, Air, and Sea,” EOS Trans. AGU 78(2), 13–16 (1997).

    Article  Google Scholar 

  65. M. Kono, Y. Fukao, and A. Yamamoto, “Mountain Building in the Central Andes,” J. Geophys. Res. 94, 3891–3905 (1989).

    Article  Google Scholar 

  66. S. Lamb, “Active Deformation in the Bolivian Andes, South America,” J. Geophys. Res. 105(B11), 25 627–25 653 (2000).

    Article  Google Scholar 

  67. S. Lamb and P. Davis, “Cenozoic Climate Change as a Possible Cause for the Rise of the Andes,” Nature 425, 792–797 (2003).

    Article  Google Scholar 

  68. S. Lamb and L. Hoke, “Origin of the High Plateau in the Central Andes, Bolivia, South America,” Tectonics 16(4), 623–649 (1997).

    Article  Google Scholar 

  69. L. Leffer, A. Mao, T. Dixon, et al., “Constraints on the Present-Day Shortering Rate across the Central Eastern Andes from GPS Measurements,” Geophys. Rev. Lett. 24, 1031–1034 (1997).

    Article  Google Scholar 

  70. R. A. Marret, R. W. Allmendinger, R. N. Alonso, and R. E. Drake, “Late Cenozoic Tectonic Evolution of the Puna Plateau and Adjacent Foreland, Northwestern Argentine Andes,” J. South Amer. Earth Sci. 7(2), 179–207 (1994).

    Article  Google Scholar 

  71. N. McQuarrie, “Initial Plate Geometry, Shortening Variations, and Evolution of the Bolivian Orocline,” Geology 30, 867–870 (2002).

    Article  Google Scholar 

  72. N. McQuarrie and G. H. Davis, “Crossing the Several Scales of Strain-Accomplishing Mechanisms in the Hinterland of the Central Andean Fold-Thrust Belt, Bolivia,” J. Struct. Geol. 24, 1587–1602 (2002).

    Article  Google Scholar 

  73. D. Mertmann, E. Scheuber, H. Ege, et al., “Tectono-Sedimentary Evolution of the Southern Altiplano: Basin Evolution, Thermochronology and Structural Geology,” in Deformation Processes in the Andes. Interaction between Endogenic and Exogenic Processes during Subduction Orogenesis. Report for the Research Period 1999–2001 (Potsdam, 2001), pp. 25–50.

  74. M. S. J. Mlynarczyk and A. E. Williams-Jones, “The Role of Collisional Tectonics in the Metallogeny of the Central Andean Tin Belt,” Earth Planet. Sci. Lett. 240, 656–667 (2005).

    Article  Google Scholar 

  75. S. C. Myers, S. Beck, G. Zandt, and T. Wallace, “Lithospheric-Scale Structure across the Bolivian Andes from Tomographic Images of Velocity and Attenuation for Pand S-Waves,” J. Geophys. Res. 103(B9), 21 233–21 252 (1998).

    Article  Google Scholar 

  76. E. Norabuena, L. Leffler-Griffin, A. Mao, et al., “Space Geodetic Observations of Nazca-South America Convergence along the Central Andes,” Science 279, 358–362 (1998).

    Article  Google Scholar 

  77. N. Okaya, S. Tawackoli, and P. Giese, “Area-Balanced Model of the Late Cenozoic Tectonic Evolution of the Central Andean Arc and Back Arc (20–22 S),” Geology 25(4), 367–370 (1997).

    Article  Google Scholar 

  78. F. Padro-Casas and P. Molnar, “Relative Motion of Nazca (Farallon) and South American Plates since Late Cretaceous Time,” Tectonics 6, 233–248 (1987).

    Article  Google Scholar 

  79. R. Patzwahl, J. Mechie, A. Schulze, and P. Giese, “Two-Dimensional Velocity Models of the Nazca Plate Subduction Zone between 20 and 25 S from Wide-Angle Seismic Measurements during the CINCA95 Project,” J. Geophys. Res. 104(B4), 7293–7318 (1999).

    Article  Google Scholar 

  80. S. M. Peacock, “Blueschist-Facies Metamorphism, Shear Heating, and P-T-t Paths in Subduction Shear Zones,” J. Geophys. Res. 97(B12), 17693–17707 (1992).

    Article  Google Scholar 

  81. S. M. Peacock, “The Importance of Blueschist-Eclogite Dehydration Reactions in Subducting Oceanic Crust,” Geol. Soc. Amer. Bull. 105, 684–694 (1993).

    Article  Google Scholar 

  82. M. C. Pomposiello, J. Booker, L. Shenghui, et al., “Is Thick-Skinned Tectonics Due to Weak Faults?,” in Proceedings of the 23rd General Assembly IUGG 19 July–30 July 1999 (Birmingham, 1999), Vol. 2, p. B139.

  83. S. C. Ponko and S. M. Peacock, “Thermal Modeling of the Southern Alaska Subduction Zone: Insight into the Petrology of Subducting Slab and Overlying Mantle Wedge,” J. Geophys. Res. 100(B11), 22 117–22 128 (1995).

    Article  Google Scholar 

  84. D. C. Pope and S. D. Willett, “Thermal-Mechanical Model for Crustal Thickening in the Central Andes Driven by Ablative Subduction,” Geology 26(6), 511–514 (1998).

    Article  Google Scholar 

  85. C. W. Rapela, R. J. Pankhurst, C. Casquet, et al., “Early Evolution of the Proto-Andean Margin of South America,” Geology 26(8), 707–710 (1998).

    Article  Google Scholar 

  86. U. Riller, O. Oncken, and M. Strecker, “Late Cenozoic Tectonomagmatic and Kinematic History of the Puna,” in Deformation Processes in the Andes. Interaction between Endogenic and Exogenic Processes during Subducting Orogenesis. Report for the Research Period 1999–2001 (Potsdam, 2001), pp. 81–94.

  87. T. V. Romanyuk, H.-J. Goetze, and P. F. Halvorson, “A Density Model of Andean Subduction Zone,” Leading Edge, (February), 264–268 (1999).

  88. P. Roperch, M. Fornari, G. Herail, and G. V. Parraguez, “Tectonic Rotations within the Bolivian Altiplano: Implications for the Geodynamic Evolution of the Central Andes during the Late Tertiary,” J. Geophys. Res. 105, 795–820 (2000).

    Article  Google Scholar 

  89. T. Ryberg and G. Fuis, “The San Gabriel Mountains Bright Reflective Zone: Possible Evidence of Young Mid-Crustal Thrust Faulting in Southern California,” Tectonophysics 286, 31–46 (1998).

    Article  Google Scholar 

  90. M. Schmitz, “A Balanced Model of the Southern Central Andes,” Tectonics 13(2), 484–492 (1994).

    Article  Google Scholar 

  91. M. Schmitz, K. Lessel, P. Giese, et al., “The Crustal Structure beneath the Central Andean Forearc and Magmatic Arc as Derived from Seismic Studies: the PISCO 94 Experiment in Northern Chile (21–23 S),” J. South Amer. Earth Sci. 12, 237–260 (1999).

    Article  Google Scholar 

  92. B. Schurr, G. Asch, A. Rietbrock, et al., “Complex Patterns of Fluid and Melt Transport in the Central Andean Subduction Zone Revealed by Attenuation Tomography,” Earth Planet. Sci. Lett. 215, 105–119 (2003).

    Article  Google Scholar 

  93. T. Sempere, R. F. Butler, D. R. Richards, et al., “Stratigraphy and Chronology of Upper Cretaceous-Lower Paleogene Strata in Bolivia and Northwest Argentina,” Geology 109(6), 709–727 (1997).

    Google Scholar 

  94. T. Sempere, G. Herail, J. Oller, and M. Bonhomme, “Late Oligocene-Early Miocene Major Tectonic Crisis and Related Basins in Bolivia,” Geology 18, 946–949 (1990).

    Article  Google Scholar 

  95. M. Springer, “Heat-Flow Density across the Central Andean Subduction Zone,” Tectonophysics 306, 377–395 (1999).

    Article  Google Scholar 

  96. R. J. Stern, “Subduction Zones,” Rev. Geophys. 40(4), 3.1–3.13.1012 (2002), doi: 10.1029/2001RG000108.

  97. J. L. Swenson, S. L. Beck, and G. Zandt, “Crustal Structure of the Altiplano from Broadband Regional Waveform Modeling: Implications for the Composition of Thick Continental Crust,” J. Geophys. Res. 105, 607–621 (2000).

    Article  Google Scholar 

  98. W. Tao and R. J. O’Connell, “Albative Subduction: A Two-Sided Alternative to the Conventional Subduction Model,” J. Geophys. Res. 97, 8877–8904 (1992).

    Article  Google Scholar 

  99. R. M. Tosdal, “The Amazon-Laurentian Connection as Viewed from the Middle Proterozoic Rocks in the Central Andes, Western Bolivia and Northern Chile,” Tectonics 15(4), 827–842 (1996).

    Article  Google Scholar 

  100. M. Van der Meijde, F. Marone, and S. van der Lee, “Seismic Evidence for Water Atop the Mediterranean Transition Zone,” EOS Trans. AGU, 85(47), Fall Meeting Supplement, Abstract T3 F-03, 2004.

  101. R. von Huene, I. A. Pecher, and M.-A. Gutscher, “Development of the Accretionary Prism along Peru and Material Flux after Subduction of Nazca Ridge,” Tectonics 15(1), 19–33 (1996).

    Article  Google Scholar 

  102. R. von Huene and D. W. Scholl, “Observations at Convergent Margins Concerning Sediment Subduction, Subduction Erosion, and the Growth of Continental Crust,” Rev. Geophys. 29(3), 279–316 (1991).

    Article  Google Scholar 

  103. S. Wdowinski and Y. Bock, “The Evolution of Deformation and Topography of High-Elevated Plateaus. 1. Model, Numerical Analysis, and General Results. 2. Application to the Central Andes,” J. Geophys. Res. 99(B4), 7121–7130 (1994).

    Article  Google Scholar 

  104. D. Whitman, “Moho Geometry beneath the Eastern Margin of the Andes, Northwest Argentina, and Its Implications to Effective Elastic Thickness of the Andean Foreland,” J. Geophys. Res. 99(B8), 15277–15289 (1994).

    Article  Google Scholar 

  105. P. Wigger, M. Schmitz, M. Araneda, et al., “Variation in the Crustal Structure of the Southern Central Andes Deduced from Seismic Refraction Investigations,” in Tectonics of the Southern Central Andes, Ed. by K.-J. Reutter, E. Schenber, and P. J. Wigger (Springer, Berlin, 1994), pp. 23–48.

    Google Scholar 

  106. Y. Yang, M. Liu, and S. Stein, “A 3-D Geodynamic Model of Lateral Crustal Flow during Andean Mountain Building,” Geophys. Rev. Lett. 30(21), 2093 (2003), doi: 10.1029/2003GL018308.

    Article  Google Scholar 

  107. X. Yuan, S. V. Sobolev, and R. Kind, “Moho Topography in the Central Andes and Its Geodynamic Implication,” Earth Planet. Sci. Lett. 199(3–4), 389–402 (2002).

    Article  Google Scholar 

  108. X. Yuan, S. V. Sobolev, R. Kind, et al., “Subduction and Collision Processes in the Central Andes Constrained by Converted Seismic Phases,” Nature 408(21), 958–961 (2000).

    Google Scholar 

  109. T. R. Zapata and R. W. Allemendinger, “Growth Strata Records of Instantaneous and Progressive Limb Rotation in the Precordillera Thrust Belt and Bermejo Basin, Argentina,” Tectonics 15(5), 1065–1083 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Romanyuk.

Additional information

Original Russian Text © T.V. Romanyuk, 2009, published in Geotektonika, 2009, No. 4, pp. 63–83.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanyuk, T.V. The Late Cenozoic geodynamic evolution of the central segment of the Andean subduction zone. Geotecton. 43, 305–323 (2009). https://doi.org/10.1134/S0016852109040050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852109040050

Keywords

Navigation