Skip to main content
Log in

The middle mantle of the earth

  • Published:
Geotectonics Aims and scope

Abstract

The middle mantle as a separate geosphere within a depth interval of 840 to 1700 km was recognized in 1995 by Yu.M. Pushcharovsky. The structure, energetics, and tectonics of the middle mantle, as well as phase transformations inherent to this geosphere, are characterized in this paper. The distribution of seismic heterogeneities established by seismic tomography is a definitive attribute of the given geosphere. The middle mantle differs from other geospheres by greater dimensions of seismic heterogeneities, especially as concerns the low- and medium-velocity domains. The high-velocity heterogeneities are round and oval in shape and in some cases reach a few thousand kilometers in size. The distribution of such heterogeneities is nonuniform and varies from one depth level to another. A high lateral contrast of anomalous domains distinguished by elastic wave velocities is expressed in gradient zones hundredths of kilometers wide. Specific general patterns of middle-mantle anomalies in the Pacific and Indian-Atlantic sectors of the Earth reflect their difference in geological history. The consideration of heterogeneities in terms of tectonics leads to the conclusion that role of the tectonic flow of mantle masses in the form of shearing and thrusting is important. The middle mantle is characterized by a special mineral composition with the prevalence of MgSiO3 crystallized as an orthorhombically distorted perovskite-type structure. The transformations of stishovite into a poststishovite modification at a depth of ∼1500 km and of aragonite into the postaragonite phase with an unusual structure at a depth of ∼1050 km are inherent to this geosphere. A change of the electronic structure of alkali cations is assumed in the middle mantle. Thus, the recognition of the middle mantle as a special geopshere is emphasized by its crystal chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. E. Bullen, An Introduction to the Theory of Seismology (Cambridge Univ. Press, Cambridge, 1947; Mir, Moscow, 1966).

    Google Scholar 

  2. K. E. Bullen, The Earth’s Density (Wiley, New York, 1975; Mir, Moscow, 1978).

    Book  Google Scholar 

  3. A. T. Ismail-Zadeh, A. I. Korotky, D. P. Krupsky, et al., “Evolution of Thermal Plumes in the Earth’s Mantle,” Dokl. Akad. Nauk 411(4), 523–526 (2006) [Dokl. Earth Sci. 411A (9), 1442–1444 (2006)].

    Google Scholar 

  4. D. Yu. Pushcharovsky and A. R. Oganov, “Structural Transformations of Minerals in Deep Geospheres: A Review,” Kristallografiya 51(5), 819–829 (2006) [Crystallogr. Rep. 51 (5), 767–777 (2006)].

    Google Scholar 

  5. Yu. M. Pushcharovsky, “Three Paradigms in Geology,” Geotektonika 30(1), 4–11 (1995).

    Google Scholar 

  6. Yu. M. Pushcharovsky, “Seismostratigraphy and Structure of the Mantle: Tectonic Aspect,” Dokl. Akad. Nauk 351(6), 806–809 (1996).

    Google Scholar 

  7. Yu. M. Pushcharovsky, “The Tectonosphere of the Earth’s Indian-Atlantic and Pacific Segments at Great Depths,” Geotektonika 34(4), 3–13 (2000) [Geotectonics 34 (4), 257–266 (2000)].

    Google Scholar 

  8. Yu. M. Pushcharovsky, “Structure, Energetics, and Tectonics of the Earth’s Mantle,” Vest. Ross. Akad. Nauk 75(12), 115–122 (2005) [Herald Russian Acad. Sci. 75 (6), 579–586 (2005)].

    Google Scholar 

  9. Yu. M. Pushcharovsky and D. Yu. Pushcharovsky, “Geosphere of the Earth’s Mantle,” Geotektonika 33(1), 3–14 (1999) [Geotectonics 33 (1), 1–11 (1999)].

    Google Scholar 

  10. Yu. M. Pushcharovsky and D. Yu. Pushcharovsky, “An Approach to the Geologic History of the Earth’s Mantle Geospheres,” Geotektonika 41(1), 6–15 (2007) [Geotectonics 41 (1), 4–12 (2007)].

    Google Scholar 

  11. O. G. Sorokhtin and S. A. Ushakov, Evolution of the Earth (Moscow State Univ., Moscow, 2002) [in Russian].

    Google Scholar 

  12. S. M. Stishov and S. V. Popova, “A New Dense Modification of Silicon Oxide,” Geokhimiya, No. 10, 837–839 (1961).

  13. J. Badro, G. Fiquet, F. Guyot, et al., “Iron Partitioning in the Earth’s Mantle: Toward a Deep Lower Mantle Discontinuity,” Science 300(5620), 789–791 (2003).

    Article  Google Scholar 

  14. A. M. Dziewonski, W. J. Su, and R. L. Woodward, “A Change in the Spectrum of Lateral Heterogeneity at about 1700 Km Depth,” EOS 73(45 Suppl.), 577 (1992).

    Google Scholar 

  15. G. Fiquet, F. Guyot, M. Kunz, et al., “Structural Refinements of Magnesite at Very High Pressure,” Am. Mineral. 87, 1261–1265 (2002).

    Google Scholar 

  16. N. Funamori, R. Jeanloz, J. H. Nguyen, et al., “High-Pressure Transformations in MgAl2O4,” J. Geophys. Res. 103, 20813–20818 (1998).

    Article  Google Scholar 

  17. L. Gautron and M. Madon, “A Study of the Stability of Anorthite in the P-T-Conditions of Earth’s Transition Zone,” Earth Planet. Sci. Lett. 125, 281–291 (1994).

    Article  Google Scholar 

  18. S. P. Grand, “Global Seismic Tomography: A Snapshot of Convection in the Earth,” GSA Today 7(4), 2–7 (1997).

    Google Scholar 

  19. T. Irifune, K. Fujino, and E. Ohtani, “A New High-Pressure Form of MgAl2O4,” Nature 349, 409–411 (1991).

    Article  Google Scholar 

  20. M. Isshiki, T. Irifune, K. Hirose, et al., “Stability of Magnesite and Its High-Pressure Form in the Lowermost Mantle,” Nature 427, 60–63 (2004).

    Article  Google Scholar 

  21. J. Geol. Soc. Japan. 100(1), VI–VII (1994).

  22. K. J. Kingma, R. E. Cohen, R. J. Hemley, and H.-K. Mao, “Transformation of Stishovite to a Denser Phase at Lower-Mantle Pressure,” Nature 374, 243–245 (1995).

    Article  Google Scholar 

  23. E. Knittle and R. Jeanloz, “High-Pressure Metallization of FeO and Implications for the Earth’s Core,” Geophys. Rev. Lett. 13, 1541–1544 (1986).

    Article  Google Scholar 

  24. R. Montelli, G. Nolet, A. Dahlen, et al., “Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle,” Science 303, 338–343 (2004).

    Article  Google Scholar 

  25. A. R. Oganov, J. P. Brodholt, and G. D. Price, “The Elastic Constants of MgSiO3 Perovskite at Pressures and Temperatures of the Earth’s Mantle,” Nature 411, 934–937 (2001).

    Article  Google Scholar 

  26. A. R. Oganov, M. J. Gillan, and G. D. Price, “Structural Stability of Silica at High Pressures and Temperatures,” Physical Review B71(6), 064104(8), (2005).

    Google Scholar 

  27. A. R. Oganov, C. W. Glass, and S. Ono, “High-Pressure Phases of CaCO3: Crystal Structure Prediction and Experiment,” Earth Planet. Sci. Lett. 241, 95–103 (2006).

    Article  Google Scholar 

  28. A. R. Oganov and S. Ono, “Theoretical and Experimental Evidence for a Post-Perovskite Phase of MgSiO3 in Earth’s D Layer,” Nature 430, 445–448 (2004).

    Article  Google Scholar 

  29. S. Ono, K. Funakoshi, Y. Ohishi, and E. Takahashi, “In Situ X-Ray Observation of the Phase Transformation of Fe2O3,” J. Phys.: Condens. Matter 17, 269–276 (2005).

    Google Scholar 

  30. S. Ono, T. Kikegawa, Y. Ohishi, and J. Tsuchiya, “Post-Aragonite Phase Transformation in CaCO3 at 40 GPa,” Am. Mineral. 90, 667–671 (2005).

    Article  Google Scholar 

  31. S. Ono and A. R. Oganov, “In Situ Observations of Phase Transition between Perovskite and CaIrO3-Type Phase in MgSiO3 and Pyrolitic Mantle Composition,” Earth Planet. Sci. Lett. 236, 914–932 (2005).

    Article  Google Scholar 

  32. S. Ono, A. R. Oganov, J. P. Brodholt, et al., “High-Pressure Phase Transformations of FeS: Novel Phases at Conditions of Planetary Cores,” Earth Planet. Sci. Lett. (2007) (in press).

  33. Y. Ren, E. Stutzmann, R. D. Hilst, and J. Besse, “Understanding Seismic Heterogeneities in the Lower Mantle beneath the Americas from Seismic Tomography and Plate Tectonic History,” J. Geophys. Res. 112, B01302, (2007) dol: 10.1029/2005 JB004154.

    Article  Google Scholar 

  34. G. Kh. Rozenberg, L. S. Dubrovinsky, M. P. Pasternak, et al., “High-Pressure Crystal Structural Studies of Hematite Fe2O3,” Physical Review 65, 064112-1–064112-8 (2002).

    Article  Google Scholar 

  35. R. L. Saltzer, E. Stutzmann, and R. D. Hilst, “Poisson’s Ratio in the Lower Mantle beneath Alaska: Evidence for Compositional Heterogeneity,” J. Geophys. Res. 109, B06301 (2004), doi: 1029/2003 JB002712.

    Article  Google Scholar 

  36. W.-J. Su, R. L. Woodward, and A. M. Dziewonski, “Degree 12 Model of Shear Velocity Heterogeneity in the Mantle,” J. Geophys. Res. 99(B4), 6945–6980 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Pushcharovsky.

Additional information

Original Russian Text © Yu.M. Pushcharovsky, D.Yu. Pushcharovsky, 2008, published in Geotektonika, 2008, No. 1, pp. 3–11.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pushcharovsky, Y.M., Pushcharovsky, D.Y. The middle mantle of the earth. Geotecton. 42, 1–7 (2008). https://doi.org/10.1134/S0016852108010019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852108010019

Keywords

Navigation