Skip to main content
Log in

Evolution of Characteristics of Vertical Electric Current and Magnetic Field in Active Regions of the Sun and Their Relation to Powerful Flares

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The study of evolution of magnetic field and electric currents in active regions of the Sun over a long-time interval is of interest for understanding the processes of energy accumulation and release in them, leading to various phenomena that affect space weather. In this study, based on the photospheric vector magnetograms of the helioseismic and magnetic imager instrument aboard the Solar Dynamics Observatory, the authors analyzed the evolution of a number of characteristics of the magnetic field and vertical electric current in three active regions, 11 158, 11 675, and 12 673, that produced M and X class flares, during the time from their origin in the eastern hemisphere, during passage through the solar disk, and until their disappearance near the western limb with a step of 2 h. The characteristics considered included: the power-law exponent of the probability density function of the absolute value of the vertical electric current density, the maximum absolute value of the vertical current density, the signed and unsigned total vertical currents and the unsigned total vertical and horizontal magnetic fluxes, the energy of the nonlinear force-free and potential magnetic fields, the free magnetic energy, and the number of islands with strong vertical current. Some regularities in the behavior of the characteristics considered are found, in particular, regarding the occurrence of solar flares. The correlation coefficients between pairs of these characteristics are calculated. Additionally, M. Aschwanden’s approach is shown to be promising for predicting the maximum X-ray class of a flare by calculating the energy of the potential magnetic field in active regions. The results can be used to predict powerful solar flares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Anfinogentov, S.A., Stupishin, A.G., Mysh’yakov, I.I., and Fleishman, G.D., Record-breaking coronal magnetic field in solar active region 12673, Astrophys. J. Lett., 2019, vol. 880, no. L29, p. 2019. https://doi.org/10.3847/2041-8213/ab3042

    Article  CAS  Google Scholar 

  2. Artemyev, A., Zimovets, I.V., Sharykin, I.N., et al., Comparative study of electric currents and energetic particle fluxes in a solar flare and Earth magnetospheric substorm, Astrophys. J., 2021, vol. 923, no. 2. https://doi.org/10.3847/1538-4357/ac2dfc

  3. Aschwanden, M.J., Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class, Astrophys. J., 2020, vol. 897, no. 16. https://doi.org/10.3847/1538-4357/ab9630

  4. Barczinskyi, K., Aulanier, G., Janvier, M., Schmieder, B., and Masson, S., Electric current evolution at the footpoints of solar eruptions, Astrophys. J., 2020, vol. 895, no. 1. https://doi.org/10.3847/1538-4357/ab893d

  5. Barnes, G. and Leka, K.D., Inferring currents from the Zeeman effect at the solar surface, in Electric Currents in Geospace and Beyond, Keiling, A., Marghitu, O., and Wheatland, M., Eds., Am. Geophys. Union, 2018, pp. 81–91. https://doi.org/10.1002/9781119324522.ch5

  6. Bloomfield, D.S., Higgins, P.A., McAteer, R.T.J., and Gallagher, P.T., Toward reliable benchmarking of solar flare forecasting methods, Astrophys. J. Lett., 2012, vol. 747, no. 2, p. L41. https://doi.org/10.1088/2041-8205/747/2/L41

    Article  Google Scholar 

  7. Bobra, M.G. and Couvidat, S., Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm, Astrophys. J., 2015, vol. 798. https://doi.org/10.1088/0004-637X/798/2/135

  8. Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., and Leka, K.D., The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: SHARPS: Space-weather HMI active region patches, Sol. Phys., 2014, vol. 289, pp. 3549–3578. https://doi.org/10.1007/s11207-014-0529-3

    Article  Google Scholar 

  9. Fleishman, G.D. and Pevtsov, A.A., Electric currents in the solar atmosphere, in Electric Currents in Geospace and Beyond, Keiling, A., Marghitu, O., and Wheatland, M., Eds., Am. Geophys. Union, 2018, pp. 43–65. https://doi.org/10.1002/9781119324522.ch3

  10. Fursyak, Yu.A. and Abramenko, V.I., Possibilities for estimating horizontal electrical currents in active regions on the Sun, Astrophys. J., 2017, vol. 60, no. 4, pp. 544–552. https://doi.org/10.1007/s10511-017-9505-6

    Article  Google Scholar 

  11. Fursyak, Yu.A., Abramenko, V.I., and Zhukova, A.V., Parameters of electric currents in active regions with different levels of flare productivity and different magnetomorphological types, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 8, pp. 1197–1206. https://doi.org/10.1134/S0016793221080089

  12. Grigoryev, V.M. and Ermakova, L.V., A study of the distribution of electric currents and current helicity in the photosphere at the growth stage of a bipolar active region, Sol. Phys., 2002, vol. 207, pp. 309–321. https://doi.org/10.1023/A:1016207115843

    Article  Google Scholar 

  13. Hoeksema, J.T., Liu, Y., Hayashi, K., et al., The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: Overview and performance, Sol. Phys., 2014, vol. 289, pp. 3483–3530. https://doi.org/10.1007/s11207-014-0516-8

    Article  Google Scholar 

  14. Ishkov, V.N., Emerging magnetic fluxes as a key to prediction of large solar flares, Izv. Akad. Nauk, Ser. Fiz., 1998, vol. 62, no. 9, pp. 1835–1839.

    Google Scholar 

  15. Ishkov, V.N., Predicting solar flare phenomena: Solar proton events, Bull. Russ. Acad. Sci.: Phys., 2023, vol. 87, no. 7. pp. 1010–1013.

    Article  Google Scholar 

  16. Janvier, M., Aulanier, G., Bommier, V., Schmieder, B., Demoulin, P., and Pariat, E., Electric currents in flare ribbons: Observations and three-dimensional standard model, Astrophys. J., 2014, vol. 788, no. 1. https://doi.org/10.1088/0004-637X/788/1/60

  17. Jiang, C., Zou, P., Feng, X., et al., Magnetohydrodynamic simulation of the X9.3 flare on 2017 September 6: Evolving magnetic topology, Astrophys. J., 2018, vol. 869, p. 13. https://doi.org/10.3847/1538-4357/aaeacc

    Article  CAS  Google Scholar 

  18. Linton M.G., Antiochos S.K., Barnes G., et al. Recent progress on understanding coronal mass ejection/flare onset by a NASA living with a star focused science team, Adv. Space Res., 2023 (in press). https://doi.org/10.1016/j.asr.2023.06.045

  19. Lysenko, A.L., Anfinogentov, S.A., Svinkin, D.S., Frederiks, D.D., and Fleishman, G.D., Gamma-ray emission from the impulsive phase of the 2017 September 6 X9.3 flare, Astrophys. J., 2019, vol. 877, p. 145. https://doi.org/10.3847/1538-4357/ab1be0

    Article  CAS  Google Scholar 

  20. Musset, S., Vilmer, N., and Bommier, V., Hard X-ray emitting energetic electrons and photospheric electric currents, Astron. Astrophys., 2015, vol. 580. https://doi.org/10.1051/0004-6361/201424378

  21. Nechaeva, A.B., Sharykin, I.N., Zimovets, I.V., and Chen, F., Relationship between the horizontal gradient of the vertical magnetic field and the horizontal electric current on the photosphere in a model active region of the Sun, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 7, pp. 956–963. https://doi.org/10.1134/S0016793221070148

  22. Nechaeva, A.B., Zimovets, I.V., and Sharykin, I.N., Comparison between probability density functions of vertical electric current in solar active regions based on HMI/SDO and SOT/HINODE data, Sol.-Terr. Phys., 2022, vol. 8, pp. 63–68. https://doi.org/10.12737/stp-83202210

    Article  Google Scholar 

  23. Nita, G.M., Fleishman, G.D., Kuznetsov, A.A., Anfinogentov, S.A., Stupishin, A.G., Kontar, E.P., Schonfeld, S.J., Klimchuk, J.A., and Gary, D.E., Data-constrained solar modeling with GX simulator, Astrophys. J. Suppl. Ser., 2023, vol. 267, p. 6. https://doi.org/10.3847/1538-4365/acd343

    Article  Google Scholar 

  24. Ofek, E.O., MAAT: MATLAB astronomy and astrophysics toolbox, Astrophys. Source Code Lib., 2014, record ascl: 1407. 005.

  25. Priest, E.R., Solar Magnetohydrodynamics, London: Reidel, 1982; Moscow: Mir, 1985.

  26. Priest, E.R. and Forbes, T.G., The magnetic nature of solar flares, Astron. Astrophys. Rev., 2002, vol. 10, no. 4, pp. 313–377. https://doi.org/10.1007/s001590100013

    Article  Google Scholar 

  27. Puschmann, K.G., Ruiz Cobo, B., and Martínez Pillet, V., The electrical current density vector in the inner penumbra of a sunspot, Astrophys. J. Lett., 2010, vol. 721, no. 1. https://doi.org/10.1088/2041-8205/721/1/L58

  28. Schatten, K.H., Wilcox, J.M., and Ness, N.F., A model of interplanetary and coronal magnetic fields, Sol. Phys., vol. 6, no. 3, pp. 442–455. https://doi.org/10.1007/BF00146478

  29. Scherrer, P.H., Schou, J., Bush, R.I., et al., The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, pp. 207–227. https://doi.org/10.1007/s11207-011-9834-2

    Article  Google Scholar 

  30. Schmieder, B. and Aulanier, G., Solar active region electric currents before and during eruptive flares, in Electric Currents in Geospace and Beyond, Keiling, A., Marghitu, O., and Wheatland, M., Eds., Am. Geophys. Union, 2018, pp. 391–406. https://doi.org/10.1002/9781119324522.ch23

  31. Schrijver, C.J. and DeRosa, M.L., Photospheric and heliospheric magnetic fields, Sol. Phys., vol. 212, no. 1, pp. 165–200. https://doi.org/10.1023/A:1022908504100

  32. Schrijver, C.J., Aulanier, G., Title, A.M., Pariat, E., and Delannée, C., The 2011 February 15 X2 flare, ribbons, coronal front, and mass ejection: Interpreting the three-dimensional views from the Solar Dynamics Observatory and STEREO guided by magnetohydrodynamic flux-rope modeling, Astrophys. J., 2011, vol. 738, p. 23. https://doi.org/10.1088/0004-637X/738/2/167

    Article  CAS  Google Scholar 

  33. Severnyi, A.B., Nekotorye problemy fiziki Solntsa (Some Problems of Solar Physics), Moscow: Nauka, 1988.

  34. Sharykin, I.N. and Kosovichev, A.G., Onset of photospheric impacts and helioseismic waves in X9.3 solar flare of 2017 September 6, Astrophys. J., 2018, vol. 864, no. 1, p. 86. https://doi.org/10.3847/1538-4357/aad558

    Article  CAS  Google Scholar 

  35. Sharykin, I.N., Kosovichev, A.G., and Zimovets, I.V., Energy release and initiation of a sunquake in a C-class flare, Astrophys. J., 2015, vol. 807, p. 102. https://doi.org/10.1088/0004-637X/807/1/102

    Article  CAS  Google Scholar 

  36. Sharykin, I.N., Zimovets, I.V., and Myshyakov, I.I., Flare energy release at the magnetic field polarity inversion line during the M1.2 solar flare of 2015 March 15. II. Investigation of photospheric electric current and magnetic field variations using HMI 135 s vector magnetograms, Astrophys. J., 2020, vol. 893, no. 2, p. 159. https://doi.org/10.3847/1538-4357/ab84ef

    Article  CAS  Google Scholar 

  37. Song, H., Tan, C., Jing, J., Wang, H., Yurchyshyn, V., and Abramenko, V., Statistical assessment of photospheric magnetic features in imminent solar flare predictions, Sol. Phys., 2009, vol. 254, no. 1, pp. 101–125. https://doi.org/10.1007/s11207-008-9288-3

    Article  Google Scholar 

  38. Stepanov, A.V. and Zaitsev, V.V., Magnitosfery aktivnykh oblastei solntsa i zvezd (The Magnetospheres of Active Regions of the Sun and Stars), Moscow: Fizmatlit, 2018.

  39. Sun, X., Hoeksema, J.T., Liu, Y., et al., Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation, Astrophys. J., 2012, vol. 748, no. 77, p. 15. https://doi.org/10.1088/0004-637X/748/2/77

    Article  Google Scholar 

  40. Tadesse, T., Pevtsov, A.A., Wiegelmann, T., MacNeise, P.J., and Gosain, S., Global solar free magnetic energy and electric current density distribution of Carrington rotation 2124, Sol. Phys., 2014, vol. 289, no. 11, pp. 4031–4045. https://doi.org/10.1007/s11207-014-0581-z

    Article  Google Scholar 

  41. Tan, B., Ji, H., Huang, G., Zhou, T., Song, Q., and Huang, Y., Evolution of electric currents associated with two M-class flares, Sol. Phys., 2006, vol. 239, nos. 1–2, pp. 137–148. https://doi.org/10.1007/s11207-006-0120-7

    Article  Google Scholar 

  42. Toriumi, S. and Wang, H., Flare-productive active regions, Living Rev. Sol. Phys., 2019, vol. 16, no. 3. https://doi.org/10.1007/s41116-019-0019-7

  43. Van Driel-Gesztelyi, L. and Green, L.M., Evolution of active regions, Living Rev. Sol. Phys., 2015, vol. 12, no. 1. https://doi.org/10.1007/lrsp-2015-1

  44. Wang, S., Liu, C., Liu, R., Deng, N., Liu, Y., and Wang, H., Response of the photospheric magnetic field to the X2.2 flare on 2011 February 15, Astrophys. J. Lett., 2012, vol. 745, p. L17. https://doi.org/10.1088/2041-8205/745/2/L17

    Article  Google Scholar 

  45. Wang, R., Liu, Y.D., Hoeksema, J.T., Zimovets, I.V., and Liu, Y., Roles of photospheric motions and flux emergence in the major solar eruption on 2017 September 6, Astrophys. J., 2012, vol. 869, p. 90. https://doi.org/10.3847/1538-4357/aaed48

    Article  CAS  Google Scholar 

  46. Yang, S., Zhang, J., Zhu, X., and Song, Q., Block-induced complex structures building the flare-productive solar active region 12673, Astrophys. J. Lett., 2017, vol. 849, no. 2, p. L21. https://doi.org/10.3847/2041-8213/aa9476

    Article  Google Scholar 

  47. Zimovets, I.V. and Sharykin, I.N., A brief review on vertical electric currents in flaring active regions at the Sun, in Proceedings of the VAK-2021 Conference “Astronomy at the Epoch of Multimessenger Studies”, Moscow, 23–28 August, 2021, Moscow, 2022. https://doi.org/10.51194/VAK2021.2022.1.1.006

  48. Zimovets, I.V., Wang, R., Liu, Y.D., Wang, C., Kuznetsov, S.A., Sharykin, I.N., Struminsky, A.B., and Nakariakov, V.M., Magnetic structure of solar flare regions producing hard X-ray pulsations, J. Atmos. Sol-Terr. Phys., 2018, vol. 174, pp. 17–27. https://doi.org/10.1016/j.jastp.2018.04.017

    Article  Google Scholar 

  49. Zimovets, I.V., Sharykin, I.N., and Gan, W.Q., Relationships between photospheric vertical electric currents and hard X-ray sources in solar flares: Statistical study, Astrophys. J., 2020a, vol. 891, no. 2. https://doi.org/10.3847/1538-4357/ab75be

  50. Zimovets, I.V., Nechaeva, A.B., Sharykin, I.N., and Gan, W.Q., Density distribution of photospheric vertical electric currents in flare-active regions of the Sun, Astrophysics, 2020b, vol. 63, pp. 408–420. https://doi.org/10.1007/s10511-020-09645-0

    Article  Google Scholar 

  51. Zimovets, I.V., Nechaeva, A.B., Sharykin, I.N., and Nizamov, B.A., Sources of long-period X-ray pulsations before the onset of solar flares, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 62, no. 4, pp. 356–374. https://doi.org/10.1134/S0016793222040181

  52. Zvereva, A.M. and Severnyi, A.B., The magnetic fields and proton flares of 7 July and 2 September 1956, Izv. Krym. Astrofiz. Obs., 1970, vols. 41–42, pp. 97–157.

    Google Scholar 

  53. Zwaan, C., Elements and patterns in the solar magnetic field, Ann. Rev. Astron. Astrophys., 1987, vol. 25, pp. 83–111. https://doi.org/10.1146/annurev.aa.25.090187.000503

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors of the article thank the SDO/HMI team and NASA for providing open access to data. The authors also acknowledge MAAT: MATLAB Astronomy and Astrophysics Toolbox (Ofek, 2014), which was used to process the data for this article. The authors also thank the reviewers for their suggested corrections.

Funding

The study was supported from the State Subsidy for Scientific Research within the framework of the topic PLASMA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. B. Nechaeva, I. V. Zimovets, V. S. Zubik or I. N. Sharykin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nechaeva, A.B., Zimovets, I.V., Zubik, V.S. et al. Evolution of Characteristics of Vertical Electric Current and Magnetic Field in Active Regions of the Sun and Their Relation to Powerful Flares. Geomagn. Aeron. 64, 150–171 (2024). https://doi.org/10.1134/S0016793223601060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223601060

Navigation