Skip to main content
Log in

The Substorms Impact on Processes in the Ionosphere and Plasmasphere of the Earth

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

During magnetospheric substorms in the F region of the ionosphere and up to altitudes of ~1000 km, a polarization jet (PJ) is developed. Measurements of energetic ring current ions on the AMPTE/CCE satellite and driftmeter data on the DMSP satellites evidence that the formation of PJ is associated with the injection of energetic ions (10–100 keV) into the inner magnetosphere during substorms. In the region of PJ development, the characteristics of the ionospheric plasma change: the plasma density decreases, sometimes by an order of magnitude, and at the same time, the plasma temperature increases significantly. In addition, simultaneously with the westward plasma drift, upward plasma drift is usually observed. The upward ion flux from the region of PJ development of ~109 cm–2 s–1 is an order of magnitude greater than the average daytime ion flux from the ionosphere to the plasmasphere. Measurements on the MAGION-5 satellite in the plasmasphere on the same L-shells, where the polarization jet is recorded in the ionosphere, show an increase in the cold ion density. The density “humps” observed near the plasmapause are apparently formed due to plasma flows from the ionosphere accompanying the formation of the polarization jet. Thus, the consequences of substorms are observed throughout almost the entire magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Anderson, P.C., Heelis, R.A., and Hanson, W.B., The ionospheric signatures of rapid subauroral ion drifts, J. Geophys. Res., 1991, vol. 96, no. A4, pp. 5785–5792. https://doi.org/10.1029/90JA02651

    Article  Google Scholar 

  2. Anderson, P.C., Hanson, W.B., Heelis, R.A., Craven, J.D., Baker, D.N., and Frank, L.A., A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution, J. Geophys. Res., 1993, vol. 98, pp. 6069–6078. https://doi.org/10.1029/92JA01975

    Article  Google Scholar 

  3. Deminov, M. G. The Earth’s ionosphere, in Plazmennaya geliogeofizika (Plasma Heliogeophysics), Zelenyi, L.M. and Veselovskii, I.S., Eds., Moscow: Fizmatlit, 2008, vol. 2, pp. 92–163.

  4. Foster, J. and Burke, W., SAPS: A new categorization for subauroral electric fields, EOS, Trans. Am. Geophys. Union, 2002, vol. 83, pp. 293–294. https://doi.org/10.1029/2002EO000289

    Article  Google Scholar 

  5. Foster, J.C. and Vo, H.B., Average characteristics and activity dependence of the subauroral polarization stream, J. Geophys. Res., 2002, vol. 107, no. A12, p. 1475. https://doi.org/10.1029/2002JA009409

    Article  Google Scholar 

  6. Galeev, A.A., The mechanism of magnetosphere substorms, Phys.-Usp., 1979, vol. 127, no. 3, pp. 535–536. https://doi.org/10.1070/PU1979v022n03ABEH005432

    Article  Google Scholar 

  7. Galperin, Yu.I., Ponomarev, V.N., and Zosimova, A.G., Direct measurements of drift rate of ions in upper atmosphere during a magnetic storm, Kosm. Issled., 1973, vol. 11, no. 2, pp. 240–258.

    Google Scholar 

  8. Galperin, Yu.I., Ponomarev, V.N., and Zosimova, A.G., Plasma convection in the polar ionosphere, Ann. Geophys., 1974, vol. 30, pp. 1–7.

    Google Scholar 

  9. Gloeckler, G., Ipavich, F.M., Studemann, W., et al., The charge-energy-mass-spectrometer for 0.3–300 keV/e ions on the Ampte CCE, IEEE Trans. Geosci. Remote Sens., 1985, vol. GE-23, no. 3, pp. 234–240. https://doi.org/10.1109/TGRS.1985.289519

    Article  Google Scholar 

  10. Khalipov, V.L., Galperin, Yu.I., Stepanov, A.E., and Shestakova, L.V., Formation of a polarization jet during the expansion phase of a substorm: Results of ground-based measurements, Cosmic Res., 2001, vol. 39, no. 3, pp. 226–235. https://doi.org/10.1023/A:1017573319665

    Article  Google Scholar 

  11. Khalipov, V.L., Galperin, Yu.I., Stepanov, A.E., and Bondar’, E.D., Formation of polarization jet during injection of ions into the inner magnetosphere, Adv. Space Res., 2003, vol. 31, no. 5, pp. 1303–1308. https://doi.org/10.1016/S0273-1177(03)00016-4

    Article  Google Scholar 

  12. Khalipov, V.L., Stepanov, A.E., Kotova, G.A., and Bondar’, E.D., Position variations of the polarization jet and injection boundary of energetic ions during substorms, Geomagn. Aeron. (Engl. Transl.), 2016a, vol. 56, no. 2, pp. 174–180. https://doi.org/10.1134/S0016793216020080

  13. Khalipov, V.L., Stepanov, A.E., Kotova, G.A., Kobyakova, S.E., Bogdanov, V.V., Kaisin, A.V., and Panchenko, V.A., Vertical plasma drift velocities in the polarization jet observation by ground Doppler measurements and driftmeters on DMSP satellites, Geomagn. Aeron. (Engl. Transl.), 2016b, vol. 56, no. 5, pp. 535–544. https://doi.org/10.1134/S0016793216050066

  14. Khazanov, G., Kinetic Theory of the Inner Magnetospheric Plasma, Astrophys. Space Sci. Lib., Springer, 2011. https://doi.org/10.1007/978-1-4419-6797-8

  15. Kitamura, N., Seki, K., Keika, K., Nishimura, Y., Hori, T., Hirahara, M., Lund, E.J., Kistler, L.M., and Strangeway, R.J., On the relationship between energy input to the ionosphere and the ion outflow flux under different solar zenith angles, Earth Planets Space, 2021, vol. 73, p. 202. https://doi.org/10.1186/s40623-021-01532-y

    Article  Google Scholar 

  16. Kotova, G.A., The Earth’s plasmasphere: State of studies (a review), Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 4, pp. 409–422. https://doi.org/10.1134/S0016793207040019

  17. Kotova, G.A., Bezrukikh, V.V., and Verigin, M.I., The effect of the Earth’s optical shadow on thermal plasma measurements in the plasmasphere, J. Atmos. Sol.-Terr. Phys., 2014, vol. 120, pp. 9–14. https://doi.org/10.1016/j.jastp.2014.08.013

    Article  Google Scholar 

  18. Kotova, G., Verigin, M., Lemaire, J., Pierrard, V., Bezrukikh, V., and Šmilauer, J., Experimental study of the plasmasphere boundary layer using MAGION 5 data, J. Geophys. Res.1, 2018, vol. 123, pp. 1251–1259. https://doi.org/10.1002/2017JA024590

  19. Kotova, G., Khalipov, V., Stepanov, A., and Bezrukikh, V., Signatures of the polarization jet in the plasmasphere, Social Sciences Research Network, 2023. https://doi.org/10.2139/ssrn.4454933.

  20. Krinberg, I.A. and Tashchilin, A.V., Ionosfera i plazmosfera (The Ionosphere and Plasmasphere), Moscow: Nauka, 1984.

  21. Landry, R.G. and Anderson, P.C., An auroral boundary-oriented model of subauroral polarization streams (SAPS), J. Geophys. Res., 2018, vol. 123, pp. 3154–3169. https://doi.org/10.1002/2017JA024921

    Article  Google Scholar 

  22. Lemaire, J.F. and Gringauz, K.I., The Earth’s Plasmasphere, Cambridge University Press, 1998.

    Book  Google Scholar 

  23. Moffett, R.J., Ennis, A.E., Bailey, G.J., Heelis, R.A., and Brace, L.H., Electron temperatures during rapid subauroral ion drift events, Ann. Geophys., 1998, vol. 16, pp. 450–459. https://doi.org/10.1007/s00585-998-0450-x

    Article  Google Scholar 

  24. Ness, N.F., The Earth’s magnetic tail, J. Geophys. Res., 1965, vol. 70, pp. 2989–3005. https://doi.org/10.1029/JZ070i013p02989

    Article  Google Scholar 

  25. Rodger, A.S., Moffett, R.J., and Quegan, S., The role of the ion drift in the formation of ionization troughs in the mid- and high-latitude ionosphere: A review, J. Atmos. Terr. Phys., 1992, vol. 54, pp. 1–30. https://doi.org/10.1016/0021-9169(92)90082-V

    Article  CAS  Google Scholar 

  26. Smiddy, M., Kelley, M.C., Burke, W.J., Rich, R., Sagalyn, R., Shuman, B., Hays, R., and Lai, S., Intense poleward directed electric fields near the ionospheric projection of plasmapause, Geophys. Res. Lett., 1977, vol. 4, pp. 543–546. https://doi.org/10.1029/GL004i011p00543

    Article  Google Scholar 

  27. Southwood, D.J. and Wolf, R.A., An assessment of the role of precipitation in magnetospheric convection, J. Geophys. Res., 1978, vol. 83, pp. 5227–5232. https://doi.org/10.1029/JA083iA11p05227

    Article  Google Scholar 

  28. Spiro, R.W., Heelis, R.A., and Hanson, W.B., Rapid subauroral ions drifts observed by Atmospheric Explorer C, Geophys. Res. Lett., 1979, vol. 6, no. 8, pp. 657–660. https://doi.org/10.1029/GL006i008p00657

    Article  Google Scholar 

  29. Stepanov, A.E., Khalipov, V.L., and Bondar’, E.D., A comparison of polarization jet characteristics at the greatly separated stations Yakutsk and Podkamennaya Tunguska, Cosmic Res., 2008, vol. 46, no. 2, pp. 114–119. https://doi.org/10.1134/S0010952508020032

    Article  Google Scholar 

  30. Stepanov, A.E., Golikov, I.A., Popov, V.I., Bondar’, E.D., and Khalipov, V.L., Structural features of the subauroral ionosphere during the origination of the polarization jet, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 5, pp. 633–639. https://doi.org/10.1134/S0016793211050136

  31. Stepanov, A.E., Khalipov, V.L., Kotova, G.A., Zabolotskii, M.S., and Golikov, I.A., Observations of large-scale plasma convection in the magnetosphere with respect to the geomagnetic activity level, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 2, pp. 181–186. https://doi.org/10.1134/S0016793216010114

  32. Stepanov, A.E., Khalipov, V.L., Golikov, I.A., and Bondar’, E.D., Polyarizatsionnyi dzhet: uzkie i bystrye dreify subavroral’noi ionosfernoi plazmy (Polarization Jet: Narrow and Fast Drifts of the Subauroral Ionospheric Plasma), Yakutsk: SVFU, 2017.

  33. Stepanov, A.E., Kobyakova, S.E., Khalipov, V.L., and Kotova, G.A., Results of observations of ionospheric plasma drift in the polarization jet region, Geomagn. Aeron. (Engl. Transl.), 2019, vol.59, no. 5, pp. 578-581. https://doi.org/10.1134/s001679321905013x

  34. Stephens, G.K., Sitnov, M.I., Korth, H., Tsyganenko, N.A., Ohtani, S., Gkioulidou, M., and Ukhorskiy, A.Y., Global empirical picture of magnetospheric substorms inferred from multimission magnetometer data, J. Geophys. Res., 2019, vol. 124, pp. 1085–1110. https://doi.org/10.1029/2018JA025843

    Article  Google Scholar 

  35. Wang, H. and Lühr, H., Seasonal variation of the ion upflow in the topside ionosphere during saps (subauroral polarization stream) periods, Ann. Geophys., 2013, vol. 31, pp. 1521–1534. https://doi.org/10.5194/angeo-31-1521-2013

    Article  CAS  Google Scholar 

  36. Yeh, H.C. and Foster, J.C., Storm time heavy ion outflow at mid-latitude, J. Geophys. Res., 1990, vol. 95, pp. 7881–7891. https://doi.org/10.1029/JA095iA06p07881

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the organizers and creators for the opportunity to use the database of geomagnetic activity indices of the Geomagnetic Data Service (kyoto-u.ac.jp), AMPTE/CCE satellite database Index of /AMPTE/summary_images/summary_image_files (jhuapl.edu) and DMSP satellite database List Madrigal experiments (openmadrigal.org).

Funding

A.E. Stepanov’s work was partially supported by the Russian Foundation for Basic Research (project no. 21-55-50 013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Kotova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotova, G.A., Khalipov, V.L., Stepanov, A.E. et al. The Substorms Impact on Processes in the Ionosphere and Plasmasphere of the Earth. Geomagn. Aeron. 64, 180–188 (2024). https://doi.org/10.1134/S0016793223601023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223601023

Navigation