Skip to main content
Log in

Criteria for Forecasting Proton Events by Real-Time Solar Observations

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The sequence for overcoming the threshold values of a number of physical characteristics for proton event forecasting in real time is discussed. Each characteristic adds a new physical meaning that refines the forecast. To take into account all the characteristics, the following continuous patrol observations are necessary: (1) the magnetic field of the active region (ascent of the flux) and the total magnetic field of the Sun, which can predict the onset of flare activity several days prior to main events; (2) soft X-ray radiation in two channels to calculate the temperature (T) and emission measure of plasma, which can show preheating to T > 10 MK required to begin proton acceleration (the first few minutes before the start of hard X-ray (HXR) radiation with energies >100 keV); (3) HXR radiation >100 keV or microwave radiation (>3 GHz), which indicates the intensity and duration of operation of the electron accelerator (a few to tens of minutes before the arrival of protons with energies >100 MeV); (4) radio emission at plasma frequencies (<1000 MHz), showing the development of the flare process upward into the corona and leading to a coronal mass ejection (CME) several minutes before the onset of type II and IV radio bursts (the first tens of minutes before the appearance of a CME in the field of view of the coronagraph); (5) the direction and velocity of CME propagation, which determine the conditions to release accelerated protons into the heliosphere. These stages of solar proton flares are illustrated by observations of proton events on August 2–9, 2011. To quantitatively predict the onset time, maximum and magnitude of the proton flux, as well as its fluence, it is necessary to create statistical regression models based on all of the listed characteristics of past solar proton events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ajello, M., Baldini, L., Bastieri, R., et al., First Fermi-LAT solar flare catalog, Astrophys. J. Suppl. Ser., 2021, vol. 252, p. 13. https://doi.org/10.3847/1538-4365/abd32e

    Article  CAS  Google Scholar 

  2. Alberti, L.M., Cliver, E.W., Storini, M., Consolini, G., and Lepreti, F., Solar activity from 2006 to 2014 and short-term forecasts of solar proton events using the ESPERTA model, Astrophys. J., 2017, vol. 838, p. 59. https://doi.org/10.3847/1538-4357/aa5cb8

    Article  Google Scholar 

  3. Altyntsev, A.T., Meshalkina, N.S., Lysenko, A.L., and Fleishman, G.D., Rapid variability in the SOL2011-08-04 flare: Implications for electron acceleration, Astrophys. J., 2019, vol. 883, p. 38. https://doi.org/10.3847/1538-4357/ab380

    Article  CAS  Google Scholar 

  4. Aschwanden, M.J., The localization of particle acceleration sites in solar flares and CMEs, Space Sci. Rev., 2006, vol. 124, pp. 361–372.

    Article  Google Scholar 

  5. Balch, C.C., Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model, Space Weather, 2008, vol. 6, p. 01001. https://doi.org/10.1029/2007SW000337

    Article  Google Scholar 

  6. Belov, A.V., Flares, ejections, proton events, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 6, pp. 727–737. https://doi.org/10.1134/S0016793217060020

  7. Belov, A., Kurt, V., Mavromichalaki, H., and Gerontidou, M., Peak-size distributions of proton fluxes and associated soft X-ray flares, Sol. Phys., 2007, vol. 246, no. 2, pp. 457–470.

    Article  CAS  Google Scholar 

  8. Chertok, I.M., Diagnostic analysis of the solar proton flares of September 2017 by their radio bursts, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 4, pp. 457–463. https://doi.org/10.1134/S0016793218040035

  9. Garcia, H.A., Temperature and emission measure from GOES soft X-ray measurements, Sol. Phys., 1994a, vol. 154, pp. 275–308. https://doi.org/10.1007/BF00681100

    Article  Google Scholar 

  10. Garcia, H.A., Temperature and hard X-ray signatures for energetic proton events, Astrophys. J., 1994b, vol. 420, pp. 422–432. https://doi.org/10.1086/173572

    Article  Google Scholar 

  11. Garcia, H.A., Forecasting methods for occurrence and magnitude of proton storms with solar soft X rays, Space Weather, 2004, vol. 2, p. 02002. https://doi.org/10.1029/2003SW000001

    Article  Google Scholar 

  12. García-Rigo, A., Núñez, M., Qahwaji, R., Ashamari, O., Jiggens, P., Pérez, G., Hernández-Pajares, M., and Hilgers, A., Prediction and warning system of SEP events and solar flares for risk estimation in space launch operations, J. Space Weather Space Clim., 2016, vol. 6, p. A28. https://doi.org/10.1051/swsc/2016021

    Article  Google Scholar 

  13. Gershtein, S.S., The mechanism of collective acceleration of solar cosmic rays, Geomagn. Aeron., 1979, vol. 19, no. 2, pp. 202–210.

    CAS  Google Scholar 

  14. Gopalswamy, N., Yashiro, G., Michalek, G., et al., The SOHO/LASCO CME catalog, Earth, Moon, Planets, 2009, vol. 10, nos. 1–4, pp. 295–313.

    Article  Google Scholar 

  15. Grigor’eva, I.Yu. and Struminsky, A.B., Flares unaccompanied by interplanetary coronal mass ejections and solar proton events, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 8, pp. 1263–1273. https://doi.org/10.1134/S0016793221080090

  16. Grigor’eva, I.Yu. and Struminsky, A.B., Formation of sources for solar cosmic rays in eruptive flares X6.9 and M5.1 observed August 9, 2011, and May 17, 2012, Astron. Rep., 2022, vol. 66, no. 6, pp. 481–489. https://doi.org/10.1134/S106377292206004X

    Article  Google Scholar 

  17. Grigor’eva, I. Yu., Struminsky, A.B., Logachev, Yu.I., and Sadovskii, A.M., Coronal propagation of solar protons during and after their stochastic acceleration, Cosmic Res., 2023, vol. 61, no. 3, pp. 232–242. https://doi.org/10.1134/S0010952523700235

    Article  Google Scholar 

  18. Hudson, H.S., Threshold effect in second-stage acceleration, Sol. Phys., 1978, vol. 57, pp. 237–240.

    Article  CAS  Google Scholar 

  19. Hudson, H.S., Simões, P.J.A., Fletcher, L., Hayes, LA., and Hannah, I.G., Hot X-ray onsets of solar flares, 2021. http://arxiv.org/abs/2007.05310. https://doi.org/10.1093/mnras/staa3664

  20. Ishkov, V.N., Predicting solar flare phenomena: Solar proton events, Bull. Russ. Acad. Sci.: Phys., 2023, vol. 87, no. 7, pp. 942–944.

    Article  CAS  Google Scholar 

  21. Kahler, S.W., Solar energetic particle events and the Kiplinger effect, Astrophys. J., 2012, vol. 747, p. 66. https://doi.org/10.1088/0004-637X/747/1/66

    Article  Google Scholar 

  22. Kahler, S.W. and Ling, A.G., A comparison of solar X-ray flare timescales and peak temperatures with associated coronal mass ejections, Astrophys. J., 2022, vol. 934, p. 175. https://doi.org/10.3847/1538-4357/ac7e56

    Article  Google Scholar 

  23. Kahler, S.W., White, S.M., and Ling, A.G., Forecasting E > 50-MeV proton events with the proton prediction system (PPS), J. Space Weather Space Clim., 2017, vol. 7, p. A27. https://doi.org/10.1051/swsc/2017025

    Article  Google Scholar 

  24. Kallenrode, M.B. and Cliver, E.W., Rogue sep events: observational aspects, in Proceedings of the 27th International Cosmic Ray Conference Under Auspices of the IUPAP, 07–15 August, 2001, Hamburg, 2001, p. 3314.

  25. Kiplinger, A., Comparative studies of hard X-ray spectral evolution in solar flares with high energy proton events observed at Earth, Astrophys. J., 1995, vol. 453, pp. 973–986. https://doi.org/10.1086/176457

    Article  Google Scholar 

  26. Klein, K.-L., Trottet, G., and Klassen, A., Energetic particle acceleration and propagation in strong CME-less flares, Sol. Phys., 2010, vol. 263, pp. 185–208. https://doi.org/10.1007/s11207-010-9540-5

    Article  CAS  Google Scholar 

  27. Kuznetsov, N.V., Radiation conditions in space vehicle orbits, in Model’ Kosmosa (Model of the Cosmos), vol. 1: Fizicheskie usloviya v kosmicheskom prostranstve (Physical Conditions in Space), Panasyuk, M.I. and Novikov, L.S., Eds., Moscow: KDU, 2007, ch. 3.9, pp. 627–641.

  28. Ling, A.G. and Kahler, S.W., Peak temperatures of large X‑ray flares and associated CME speeds and widths, Astrophys. J., 2020, vol. 891, no. 8, p. 54. https://doi.org/103847/1538-4357/ab6f6c.

    Article  Google Scholar 

  29. Logachev, Yu.I., Bazilevskaya, G.A., Daibog, E.I., Ishkov, V.N., Lazutin, L.L., and Surova, G.M., New parameter in the description of solar cosmic ray events—energy of balance between solar and galactic protons, Phys. At. Nucl., 2018, vol. 81, no. 3, pp. 371–376.

    Article  Google Scholar 

  30. Lysenko, A.L., Frederiks, D.D., Fleishman, G.D., et al., Xhray and gamma-ray emission from solar flares, Phys.-Usp., 2020, vol. 63, no. 8, pp. 818–832. https://doi.org/10.3367/ufne.2019.06.038757

    Article  CAS  Google Scholar 

  31. Miller, J.A., Cargill, P.J., Emslie, A.G., et al., Critical issues for understanding particle acceleration in impulsive solar flares, J. Geophys. Res., 1997, vol. 102, no. A7, pp. 14631–14660. https://doi.org/10.1029/97JA00976

    Article  CAS  Google Scholar 

  32. Müller-Mellin, R., Kunow, H., Fleißner, V., et al., COST-EP: Comprehensive suprathermal and energetic particle analyser, Sol. Phys., 1995, vol. 162, p. 483.

    Article  Google Scholar 

  33. Neupert, W.M., Comparison of solar X-ray line emission with microwave emission during flares, Astrophys. J., 1968, vol. 153, pp. L59–L64.

    Article  Google Scholar 

  34. Núñez, M., Predicting solar energetic proton events (E > 10 MeV), Space Weather, 2011, vol. 9, p. S07003. https://doi.org/10.1029/2010SW000640

    Article  Google Scholar 

  35. Núñez, M., Real-time prediction of the occurrence and intensity of the first hours of > 100 MeV solar energetic proton events, Space Weather, 2015, vol. 13, pp. 807–819. https://doi.org/10.1002/2015SW001256

    Article  Google Scholar 

  36. Núñez, M., Predicting well-connected SEP events from observations of solar soft X-rays and near-relativistic electrons, J. Space Weather Space Clim., 2018, vol. 8, p. A3. https://doi.org/10.1051/swsc/2018023

    Article  Google Scholar 

  37. Núñez, M. and Paul-Pena, D., Predicting > 10 MeV SEP events from solar flare and radio burst data, Universe, 2020, vol. 6, p. 161. https://doi.org/10.3390/universe6100161

    Article  Google Scholar 

  38. Nymnik, R.A., Model of solar cosmic rays, Model’ Kosmosa (Model of the Cosmos), vol. 1: Fizicheskie usloviya v kosmicheskom prostranstve (Physical Conditions in Space), Panasyuk, M.I. and Novikov, L.S., Eds., Moscow: KDU, 2007, ch. 2.7, pp. 402–416.

  39. Ramaty, R., Colgate, S.A., Dulk, G.A., et al., Energetic particles in solar flares, in Proc. of the 2nd SKYLAB Workshop on Solar Flares, Sturrock, P.A., Ed., Boulder, Colo., 1978, ch. 4, pp. 117–185.

  40. Sarantsev, V.P. and Perel’shtein, E.A., Kollektivnoe uskorenie ionov elektronnymi kol’tsami (Collective Ion Acceleration by Electron Rings), Moscow: Atomizdat, 1979.

  41. Shih, A.Y., Lin, R.P., and Smith, D.M., RHESSI observations of the proportional acceleration of relativistics > 0.3 MeV electrons and >30 MeV protons in solar flares, Astrophys. J., 2009, vol. 698, no. 2, pp. L152–L157.

    Article  CAS  Google Scholar 

  42. Struminsky, A.B., Grigor’eva, I.Yu., Logachev, Yu.I., and Sadovskii, A.M., Solar electrons and protons in the events of September 4–10, 2017 and related phenomena, Plasma Phys. Rep., 2020, vol. 46, no. 2, pp. 174–188. https://doi.org/10.1134/S1063780X20020130

    Article  Google Scholar 

  43. Struminsky, A.B., Grigor’eva, I.Yu., Logachev, Yu. I., and Sadovski, А.М. Relationship between duration and rate of the CME acceleration, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 6, pp. 781–791. https://doi.org/10.1134/S0016793221050133

  44. Struminsky, A.B., Sadovskii, A.M., and Grigor’eva, I.Yu., Expansion of the soft X-ray source and “magnetic detonation” in solar flares, Astronomy Letters (Engl. Transl.), 2023, Vol. 49, No. 11, pp. 723–735. https://doi.org/10.1134/S1063773723110087

  45. Swalwell, B., Dalla, S., and Walsch, R.W., Solar energetic particle forecasting algorithms and associated false alarms, Sol. Phys., 2017, vol. 292, p. 173. https://doi.org/10.10007/s11207-017-1196-y

    Article  CAS  Google Scholar 

  46. Tsap, Yu.T. and Mel’nikov, V.F., Collisional plasma temperature and betatron acceleration of quasi-thermal electrons in solar flares, Astron. Lett., 2023, vol. 48, no. 4, pp. 200–208.

    Article  Google Scholar 

  47. Zucca, P., Núñez, M., and Klein, K., Exploring the potential of microwave diagnostics in SEP forecasting: The occurrence of SEP events, J. Space Weather Space Clim., 2017, vol. 7, p. A13. https://doi.org/10.1051/swsc/2017011

    Article  Google Scholar 

  48. Zuccarello, F.P., Seaton, D.B., Mierla, M., Poedts, S., Rachmelz, L.A., Romano, P., and Zuccarello, F., Observational evidence of torus instability as trigger mechanism for coronal mass ejections: The 2011 August 4 filament eruption, Astrophys. J., 2014, vol. 785, p. 88. https://doi.org/10.1088/0004-637X/785/2/88

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the participants of the space experiments GOES, ACS SPI, SOHO/EPHIN, and SOHO/LASCO for their work and providing open access to data.

Funding

The study was supported by grants on the topics “Plasma” (A.B.S. and A.M.S.) at the Space Research Institute, Russian Academy of Sciences, and “Multiwavelength Active Sun” (I.Yu.G.) at the Main (Pulkovo) Astronomical Observatory, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Struminsky.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Struminsky, A.B., Sadovskii, A.M. & Grigorieva, I.Y. Criteria for Forecasting Proton Events by Real-Time Solar Observations. Geomagn. Aeron. 64, 139–149 (2024). https://doi.org/10.1134/S0016793223600984

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600984

Navigation