Skip to main content
Log in

Long-Term Temperature Trend in the Mesopause Region from Observations of Hydroxyl Airglow in Zvenigorod

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The study analyzes the long-term average annual OH* temperature trend, the values of which were obtained from nighttime spectral measurements of hydroxyl airglow bands at Zvenigorod research station (56° N, 37° E) from 1957 to 2022. At present, this OH* temperature series, which reflects the thermal state of the mesopause region, is the longest in the world. On its basis, the linear trend and response of temperature to changes in solar activity are estimated both in general for the entire data set and for individual time intervals. In the first case, the trend was –0.23 ± 0.04 K/year. In the second case, the analysis showed a strong cooling in the mesopause region (–0.53 ± 0.34 K/yr) until the 1970s, which subsequently slowed to –0.14 ± 0.03 K/yr. Comparison of the results with other measurements and model calculations shows that the latter have lower trend values. It is suggested that the causes of the temperature trend, in addition to the increase in greenhouse gases, the main one being CO2, can be due to long-term changes in the dynamics of the upper atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Bakanas, V.V., Perminov, V.I., and Semenov, A.I., Seasonal variations of emission characteristics of the mesopause hydroxyl with different vibrational excitation, Adv. Space Res., 2003, vol. 32, no. 5, pp. 765–770.

    Article  ADS  Google Scholar 

  2. Baker, D.J. and Stair, A.T., Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scr., 1988, no. 37, pp. 611–622.

  3. Beig, G., Long-term trends in the temperature of the mesosphere/lower thermosphere region: 1. Anthropogenic influences, J. Geophys. Res., 2011, vol. 116, no. 11, p. A00H11. https://doi.org/10.1029/2011JA016646

    Article  ADS  Google Scholar 

  4. Beig, G., Keckhut, P., Lowe, R.P., et al., Review of mesospheric temperature trends, Rev. Geophys., 2003, vol. 41, p. 1015. https://doi.org/10.1029/2002RG000121

    Article  ADS  CAS  Google Scholar 

  5. Dalin, P., Perminov, V., Pertsev, N., and Romejko, V., Updated long-term trends in mesopause temperature, airglow emissions, and noctilucent clouds, J. Geophys. Res.: Atmos., 2020, vol. 125, e2019JD030814. https://doi.org/10.1029/2019JD030814

  6. Dick, K.A., On the rotational temperature of the airglow hydroxyl emissions, Planet. Space Sci., 1977, vol. 25, no. 6, pp. 595–596.

    Article  ADS  CAS  Google Scholar 

  7. Emmert, J.T., Drob, D.P., Picone, J.M., et al., NRLMSIS 2.0: A whole-atmosphere empirical model of temperature and neutral species densities, Earth Space Sci., 2021, vol. 8, no. 3, p. e2020EA001321. https://doi.org/10.1029/2020EA001321

  8. Feofilov, A.G. and Kutepov, A.A., Infrared radiation in the mesosphere and lower thermosphere: Energetic effects and remote sensing, Surv. Geophys., 2012, vol. 33, pp. 1231–1280.

    Article  ADS  Google Scholar 

  9. Fishkova, L.M., Nochnoe izluchenie sredneshirotnoi verkhnei atmosfery Zemli (Nightglow of the Earth’s Midlatitude Upper Atmosphere), Tbilisi: Metsniereba, 1983.

  10. Fomichev, V.I., Jonsson, A.I., de Grandpre, J., Beagley, S.R., McLandress, C., Semeniuk, K., and Shepherd, T.G., Response of the middle atmosphere to CO2 doubling: Results from the Canadian middle atmosphere model, J. Clim., 2007, vol. 20, pp. 1121–1144.

    Article  ADS  Google Scholar 

  11. French, W.J.R., Burns, G.B., Finlayson, K., Greet, P.A., Lowe, R.P., and Williams, P.F.B., Hydroxyl (6-2) airglow emission intensity ratios for rotational temperature determination, Ann. Geophys., 2000, vol. 18, pp. 1293–1303.

    ADS  CAS  Google Scholar 

  12. French, W.J.R., Mulligan, F.J., and Klekociuk, A.R., Analysis of 24 years of mesopause region oh rotational temperature observations at Davis, Antarctica – Part 1: Long-term trends, Atmos. Chem. Phys., 2020, vol. 20, pp. 6379–6394.

    Article  ADS  CAS  Google Scholar 

  13. Gainullina, R.Kh. and Karyagina, Z.V., Determination of upper atmospheric temperature using the hydroxyl rotation spectrum, in Spektral’nye, spektrofotometricheskie i radiolokatsionnye issledovaniya polyarnykh siyanii i svecheniya nochnogo neba (Spectral, Spectrophotometric and Radar Studies of Auroras and Nightglow), 1960, nos. 2–3, pp. 63–65.

  14. Garcia, R.R., Marsh, D.R., Kinnison, D.E., Boville, B.A., and Sassi, F., Simulation of secular trends in the middle atmosphere, 1950–2003, J. Geophys. Res., 2007, vol. 112, p. D09301. https://doi.org/10.1029/2006JD007485

    Article  ADS  CAS  Google Scholar 

  15. Garcia, R.R., Yue, J., and Russell, J.M., Middle atmosphere temperature trends in the twentieth and twenty-first centuries simulated with the Whole Atmosphere Community Climate Model (WACCM), J. Geophys. Res.: Space Phys., 2019, vol. 124, pp. 7984–7993.

    Article  ADS  Google Scholar 

  16. Gerasimova, N.G. and Yakovleva, A.V., A system of high-transmission spectrographs with diffraction grating, Prib. Tekh. Eksp., 1956, no. 1, pp. 83–86.

  17. Golitsyn, G.S., Semenov, A.I., Shefov, N.N., Fishkova, L.M., Lysnko, E.V., and Perov, S.P., Long-term temperature trends in atmosphere, Geophys. Res. Lett., 1996, vol. 23, no. 14, pp. 1741–1744.

    Article  ADS  CAS  Google Scholar 

  18. Grygalashvyly, M., Several notes on the OH* layer, Ann. Geophys., 2015, vol. 33, no. 7, pp. 923–930.

    Article  ADS  CAS  Google Scholar 

  19. Holmen, S.E., Dyrland, M.E., and Sigernes, F., Mesospheric temperatures derived from three decades of hydroxyl airglow measurements from Longyearbyen, Svalbard (78° N), Acta Geophys., 2014, vol. 62, pp. 302–315.

    Article  ADS  Google Scholar 

  20. Jacobi, Ch., Long-term trends and decadal variability of upper mesosphere/lower thermosphere gravity waves at midlatitudes, J. Atmos. Sol.-Terr. Phys., 2014, vol. 118, pp. 90–95.

    Article  ADS  Google Scholar 

  21. Kalicinsky, C., Knieling, P., Koppmann, R., Offermann, D., Steinbrecht, W., and Wintel, J., Long-term dynamics of OH* temperatures over central Europe: Trends and solar correlations, Atmos. Chem. Phys., 2016, vol. 16, pp. 15033–15047.

    Article  ADS  CAS  Google Scholar 

  22. Kaporskii, L.N. and Nikolaeva, I.I., Opticheskie pribory. Katalog (Optical Instruments: A Directory), Nikitin, V.A., Ed., Moscow: Mashinostroenie, 1969.

    Google Scholar 

  23. Krassovsky, V.I., Shefov, N.N., and Yarin, V.I., Atlas of the airglow spectrum 3000–12400 Å, Planet. Space Sci., 1962, vol. 9, no. 12, pp. 883–915.

    Article  ADS  Google Scholar 

  24. Krassovsky, V.I., Potapov, B.P., Semenov, A.I., Shagaev, M.V., Shefov, N.N., and Sobolev, V.G., On the equilibrium nature of the rotational temperature of hydroxyl airglow, Planet. Space Sci., 1977, vol. 25, no. 6, pp. 596–597.

    Article  ADS  Google Scholar 

  25. Kvifte, G., Temperature measurements from OH bands, Planet. Space Sci., 1961, vol. 5, pp. 153–157.

    Article  ADS  CAS  Google Scholar 

  26. Langhoff, S.R., Werner, H.J., and Rosmus, P., Theoretical transition probabilities for the OH Meinel system, J. Mol. Spectrosc., 1986, vol. 118, no. 4, pp. 507–529.

    Article  ADS  CAS  Google Scholar 

  27. Makhlouf, U.B., Picard, R.H., and Winick, J.R., Photochemical–dynamical modeling of the measured response of airglow to gravity waves. 1. Basic model for OH airglow, J. Geophys. Res., 1995, vol. 100, no. D6, pp. 11 289–11 311.

    Article  ADS  Google Scholar 

  28. Marsh, D.R., Mills, M.J., Kinnison, D.E., Lamarque, J.-F., Calvo, N., and Polvani, L.M., Climate change from 1850 to 2005 simulated in CESM1 (WACCM), J. Clim., 2013, vol. 26, no. 19, pp. 7372–7391.

    Article  ADS  Google Scholar 

  29. Meinel, A.B., OH emission bands in the spectrum of the night sky, Astrophys. J., 1950, vol. 112, no. 1, pp. 120–130.

    Article  ADS  CAS  Google Scholar 

  30. Merzlyakov, E.G. and Portnyagin, Yu.I., Long-term changes in the parameters of winds in the midlatitude lower thermosphere (90–100 km), Izv., Atmos. Ocean. Phys., 1999, vol. 35, no. 4, pp. 482–493.

    Google Scholar 

  31. Mlynczak, M.G., Hunt, L.A., Garcia, R.R., Harvey, V.L., Marshall, B.T., Yue, J., Mertens, C.J., and Russell, J.M., Cooling and contraction of the mesosphere and lower thermosphere from 2002 to 2021, J. Geophys. Res.: Atmos., 2022, vol. 127, p. e2020JD036767. https://doi.org/10.1029/2022JD036767

  32. Mokhov, I.I., Semenov, A.I., Volodin, E.M., and Dembitskaya, M.A., Changes of cooling near mesopause under global warming from observations and model simulations, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 4, pp. 383–391.

    Article  Google Scholar 

  33. Offermann, D., Hoffmann, P., Knieling, P., Koppmann, R., Oberheide, J., and Steinbrecht, W., Long-term trends and solar cycle variations of mesospheric temperature and dynamics, J. Geophys. Res., 2010, vol. 115, p. D18127. https://doi.org/10.1029/2009JD013363

    Article  ADS  CAS  Google Scholar 

  34. Perminov, V.I. and Semenov, A.I., Nonequilibrium of the rotational temperature of OH bands with high vibrational excitation, Geomagn. Aeron., 1992, vol. 32, no. 2, pp. 175–178.

    ADS  Google Scholar 

  35. Perminov, V.I., Semenov, A.I., Shefov, N.N., and Tikhonova, V.V., Determination of seasonal variations of the height of the emitting hydroxyl layer, Geomagn. Aeron., 1993, vol. 33, no. 3, pp. 113–120.

    ADS  Google Scholar 

  36. Perminov, V.I., Semenov, A.I., and Shefov, N.N., Long-term variations in mesopause temperature, in Abstracts of Eighth International Symposium on Solar Terrestrial Physics, Sendai, Japan, 1994, p. 199.

  37. Perminov, V.I., Semenov, A.I., and Shefov, N.N., On rotational temperature of the hydroxyl emission, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 6, pp. 756–763.

  38. Perminov, V.I., Semenov, A.I., Medvedeva, I.V., and Zheleznov, Yu.A., Variability of mesopause temperature from the hydroxyl airglow observations over mid-latitudinal sites, Zvenigorod and Tory, Russia, Adv. Space Res., 2014, vol. 54, no. 12, pp. 2511–2517.

    Article  ADS  CAS  Google Scholar 

  39. Perminov, V.I., Semenov, A.I., Pertsev, N.N., Medvedeva, I.V., Dalin, P.A., and Sukhodoev, V.A., Multi-year behaviour of the midnight oh temperature according to observations at Zvenigorod over 2000–2016, Adv. Space Res., 2018, vol. 61, no. 7, pp. 1901–1908.

    Article  ADS  CAS  Google Scholar 

  40. Pertsev, N. and Perminov, V., Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia, Ann. Geophys., 2008, vol. 26, no. 5, pp. 1049–1056.

    Article  ADS  CAS  Google Scholar 

  41. Prokudina, V.S., Determination of the hydroxyl rotational temperature in the upper atmosphere, Izv. Akad. Nauk SSSR, Ser. Geofiz., 1959, no. 125, pp. 629–631.

  42. Qian, L., Burns, A.G., Solomon, S.C., and Wang, W., Carbon dioxide trends in the mesosphere and lower thermosphere, J. Geophys. Res.: Space Phys., 2017, vol. 122, pp. 4474–4488.

    Article  ADS  CAS  Google Scholar 

  43. Reisin, E.R., Scheer, J., Dyrland, M.E., et al., Traveling planetary wave activity from mesopause region airglow temperatures determined by the Network for the Detection of Mesospheric Change (NDMC), J. Atmos. Sol.-Terr. Phys., 2014, vol. 119, pp. 71–82.

    Article  ADS  CAS  Google Scholar 

  44. Rezac, L., Yue, J., Yongxiao, J., Russell, J.M., Garcia, R., Lopez-Puertas, M., and Mlynczak, M.G., On long-term saber CO2 trends and effects due to nonuniform space and time sampling, J. Geophys. Res.: Space Phys., 2018, vol. 123, pp. 7958–7967.

    Article  ADS  CAS  Google Scholar 

  45. Rishbeth, H. and Roble, R.G., Cooling of the upper atmosphere by enhanced greenhouse gases: Modeling of thermospheric and ionospheric effects, Planet. Space Sci., 1992, vol. 40, pp. 1011–1026.

    Article  ADS  CAS  Google Scholar 

  46. Roble, R.G. and Dickinson, R.E., How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?, Geophys. Res. Lett., 1989, vol. 16, pp. 1441–1444.

    Article  ADS  CAS  Google Scholar 

  47. Schmidt, H., Brasseur, G.P., Charron, M., Manzini, E., Giorgetta, M.A., Dieh, T., Fomichev, V.I., Kinnison, D., Marsh, D., and Walters, S., The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling, J. Clim., 2006, vol. 19, pp. 3903–3931.

    Article  ADS  Google Scholar 

  48. Semenov, A.I., A behavior of the lower-thermosphere temperature inferred from emission measurements during the last decades, Geomagn. Aeron. (Engl. Transl.), 1996, vol. 36, no. 5, pp. 655–659.

  49. Semenov, A.I., Long term temperature trends for different seasons by hydroxyl emission, Phys. Chem. Earth B, 2000, vol. 25, nos. 5–6, pp. 525–529.

    Article  Google Scholar 

  50. Semenov, A.I. and Shefov, N.N., Emission of the upper atmosphere is a sensitive indicator of solar–terrestrial processes: Summary of results over a period of 60 years, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 4, pp. 429–443.

  51. Semenov, A.I., Bakanas, V.V., Perminov, V.I., Zheleznov, Yu.A., and Khomich, V.Yu., The near infrared spectrum of the emission of the nighttime upper atmosphere of the Earth, Geomagn. Aeron. (Engl. Transl.), 2002a, vol. 42, no. 3, pp. 390–397.

  52. Semenov, A.I., Shefov, N.N., Lysenko, E.V., Givishvili, G.V., and Tikhonov, A.V., The season peculiarities of behaviour of the long-term temperature trends in the middle atmosphere on the mid-latitudes, Phys. Chem. Earth, 2002b, vol. 27, pp. 529–534.

    Article  ADS  Google Scholar 

  53. Semenov, A.I., Shefov, N.N., Fishkova, L.M., Lysenko, E.V., Perov, S.P., Givishvili, G.V., Leshchenko, L.N., and Sergeenko, N.P., Climatic changes in the upper and middle atmosphere, Dokl. Earth Sci., 1996, vol. 349, no. 5, pp. 870–872.

    Google Scholar 

  54. She, C.Y., Thiel, S.W., and Krueger, D.A., Observed episodic warming at 86 and 100 km between 1991 and 1997: Effects of mount Pinatubo eruption, Geophys. Res. Lett., 1998, vol. 25, no. 4, pp. 497–500.

    Article  ADS  Google Scholar 

  55. She, C.Y., Berge, U., Yan, Z.A., Yuan, T., Lübken, F.J., Krueger, D.A., and Hu, X., Solar response and long-term trend of midlatitude mesopause region temperature based on 28 years (1990–2017) of Na lidar observations, J. Geophys. Res.: Space Phys., 2019, vol. 124, pp. 7140–7156.

    Article  ADS  Google Scholar 

  56. Shefov, N.N., On the determination of OH rotational temperature, in Spektral’nye, spektrofotometricheskie i radiolokatsionnye issledovaniya polyarnykh siyanii i svecheniya nochnogo neba (Spectral, Spectrophotometric and Radar Studies of Auroras and Nightglow), Moscow, 1961, no. 5, pp. 5–9.

  57. Shefov, N.N., Hydroxyl emission of the upper atmosphere – I. The behavior during a solar cycle, seasons and geomagnetic disturbances, Planet. Space Sci., 1969, vol. 17, pp. 797–813.

    Article  ADS  CAS  Google Scholar 

  58. Shefov, N.N., Semenov, A.I., and Khomich, V.Yu., Izluchenie verkhnei atmosfery – indikator ee struktury i dinamiki (Upper Atmospheric Radiation: An Indicator of Its Structure and Dynamics), Moscow: GEOS, 2006.

  59. Shuiskaya, F.K., Some results of spectroscopic studies of auroras and nightglows, in Spektral’nye, spektrofotometricheskie i radiolokatsionnye issledovaniya polyarnykh siyanii i svecheniya nochnogo neba (Spectral, Spectrophotometric and Radar Studies of Auroras and Nightglow), Moscow, 1959, no. 1, pp. 45–47.

  60. Solomon, S.C., Liu, H.-L., Marsh, D.R., McInerney, J.M., Qian, L., and Vit, F.M., Whole atmosphere simulation of anthropogenic climate change, Geophys. Res. Lett., 2018, vol. 45, pp. 1567–1576.

    Article  ADS  CAS  Google Scholar 

  61. Yarin, V.I., OH emission according to observations in Yakutsk, in Spektral’nye, spektrofotometricheskie i radiolokatsionnye issledovaniya polyarnykh siyanii i svecheniya nochnogo neba (Spectral, Spectrophotometric and Radar Studies of Auroras and Nightglow), Moscow, 1961, no. 5, pp. 10–17.

  62. Yue, J., Russell, J., Jian, Y., Rezac, L., Garcia, R., Lopez-Puertas, M., and Mlynczak, M.G., Increasing carbon dioxide concentration in the upper atmosphere observed by SABER, Geophys. Res. Lett., 2015, vol. 42, pp. 7194–7199.

    Article  ADS  CAS  Google Scholar 

  63. Zhao, X.R., Sheng, Z., Shi, H.Q., Weng, L.B., and He, Y., Middle atmosphere temperature changes derived from SABER observations during 2002–20, J. Clim., 2021, vol. 34, pp. 7995–8012.

    ADS  Google Scholar 

Download references

Funding

The study was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Perminov, N. N. Pertsev, P. A. Dalin, V. A. Semenov, V. A. Sukhodoev, Yu. A. Zheleznov or M. D. Orekhov.

Ethics declarations

The authors of this study declare that they have no conflicts of interest.

Additional information

Translated by O. Pismenov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perminov, V.I., Pertsev, N.N., Dalin, P.A. et al. Long-Term Temperature Trend in the Mesopause Region from Observations of Hydroxyl Airglow in Zvenigorod. Geomagn. Aeron. 64, 84–93 (2024). https://doi.org/10.1134/S001679322360090X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679322360090X

Navigation