Skip to main content
Log in

Response of the Equatorial Ionosphere over the South American Region to 8 September 2017 Geomagnetic Storm

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

This study delved into the response of the equatorial ionosphere in the South American region to the geomagnetic storm in September 2017. Six global positioning system (GPS) receivers, positioned along 45° W and 70° W, were utilized to estimate the daily variation of total electron content (TEC). A pair of magnetometers measured the strength of the equatorial electrojet (EEJ) (inferred E × B drift), and the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite revealed changes in the thermospheric neutral composition before, during, and after the geomagnetic storm on September 8, 2017. The pre-storm effect and occurrence of solar flares, accompanied by solar bursts are responsible for the significant enhancement in TEC magnitudes days prior to geomagnetic storm event. However, the significant enhancement observed in the TEC magnitude during the main phase of the geomagnetic storm was primarily driven by DP2 (disturbance polar number 2), created by the daytime prompt penetration of electric field (PPEF) signature. Other mechanisms responsible for this enhancement included the increase in thermospheric neutral composition, O/N2 ratio, and more ionization of electrons due to the increase in solar flux. Furthermore, the drastic increase in the amplitude of the morning-afternoon magnetometer-inferred upward-directed E × B drift during the main phase of the storm, compared to the quiet periods, was attributed to the magnetic signature (DP2) due to PPEF. Additionally, the inhibition of ionospheric irregularities at the equatorial ionosphere during the main phase of the geomagnetic storm may be associated with the storm-time occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Adebiyi, S. J., Adimula, I. A., and Oladipo, O. A., Investigation on mid-latitude stations to storm-time variations of GPS-TEC, Adv. Space Res., 2015, vol. 55, no. 5, pp. 1339–1348. https://doi.org/10.1016/j.asr.2014.11.030

    Article  ADS  Google Scholar 

  2. Abdu, M.A., de Paula, E.R., Batista, I.S., Reinisch, B.W., Matsuoka, M.T., Camargo, P.O., Veliz, O., Denardini, C.M., Sobral, J.H.A., Kherani, E.A., and de Siqueira, P.M., Abnormal evening vertical plasma drift and effects on ESF and EIA over Brazil-South Atlantic sector during the 30 October 2003 superstorm, J. Geophys. Res.: Space Phys., 2008, vol. 113, no. A7, p. A07313. https://doi.org/10.1029/2007JA012844

    Article  ADS  Google Scholar 

  3. Adekoya, B.J., Chukwuma, V.U., and Salako, S.A., On the coexistence of positive and negative ionospheric storm during geomagnetic storms and pre storm phenomena on low and low-mid latitude ionospheric F2, in Proceedings of 5th Annual Conference of the Nigeria Union of Radio Science (NURS) an Affiliate of International Union of Radio Science Nigeria (URSI), 2013, pp. 15–28.

  4. Adekoya, B.J. and Adebesin, B.O., Ionospheric and solar wind variation during magnetic storm onset and main phase at low- and mid-latitudes, Acta Geophys., 2015, vol. 63, no. 4, pp. 1150–1180. https://doi.org/10.1515/acgeo-2015-0020

    Article  ADS  Google Scholar 

  5. Akala, A. O., Doherty, P. H., Valladares, C. E., Carrano, C., and Sheehan, R., Statistics of GPS scintillations over South America at three levels of solar activity, Radio Sci., 2011, vol. 46, p. RS5018. https://doi.org/10.1029/2011RS004678

    Article  ADS  Google Scholar 

  6. Akala, A.O., Amaeshi, L.L.N., Doherty, P.H., Groves, K.M., Carrano, C.S., Bridgwood, C.T., et al., Characterization of GNSS scintillations over Lagos, Nigeria during the minimum and ascending phases (2009–2011) of solar cycle 24, Adv. Space Res., 2014, vol. 53, pp. 37–47. https://doi.org/10.1016/j.asr.2013.09.034

    Article  ADS  Google Scholar 

  7. Akala, A. O., Oyeyemi, E. O., Amaechi, P. O., Radicella, S. M., Nava, B., and Amory-Mazaudier, C., Longitudinal responses of the equatorial/low-latitude ionosphere over the oceanic regions to geomagnetic storms of May and September 2017, J. Geophys. Res.: Space Phys., 2020, vol. 125, p. e2020JA027963. https://doi.org/10.1029/2020JA027963

  8. Alfonsi, L., Cesaroni, C., Spogli, L., Regi, M., Paul, A., Ray, S., Lepidi, S., Di Mauro, D., Haralambous, H., Oikonomou, C., Shreedevi, P.R., and Sinha, A.K., Ionospheric disturbances over the Indian sector during 8 September 2017 geomagnetic storm: Plasma structuring and propagation, Space Weather, 2021, vol. 19, no. 3, p. e2020SW002607. https://doi.org/10.1029/2020SW002607

  9. Amory-Mazaudier, C., Bolaji, O.S., and Doumbia, V., On the historical origins of the CEJ, DP2, and Ddyn current systems and their roles in the predictions of ionospheric responses to geomagnetic storms at equatorial latitudes, J. Geophys. Res.: Space Phys., 2017, vol. 122, pp. 7827–7833. https://doi.org/10.1002/2017JA024132

    Article  ADS  Google Scholar 

  10. Baker, D.N., How to cope with space weather, Science, 2002, vol. 297, no. 5586, pp. 1486–1487. https://doi.org/10.1126/science.1074956

    Article  CAS  PubMed  Google Scholar 

  11. Blagoveshchensky, D.V., Maltseva, O.A., and Rodger, A.S., Ionosphere dynamics over Europe and western Asia during magnetospheric substorms 1998–99, Ann. Geophys., 2003, vol. 21, no. 5, pp. 1141–1151. https://doi.org/10.5194/angeo-21-1141-2003

    Article  ADS  Google Scholar 

  12. Blagoveshchensky, D.V., and Sergeeva, M.A., Impact of geomagnetic storm of September 7–8, 2017 on ionosphere and HF propagation: A multi-instrument study. Adv. Space Res., 2018, https://doi.org/10.1016/j.asr.2018.07.016

  13. Blanc, M., and Richmond, A., The ionospheric disturbance dynamo, J. Geophys. Res., 1980, vol. 85, no. A4, pp. 1669–1686. https://doi.org/10.1029/JA085iA04p01669

    Article  ADS  Google Scholar 

  14. Bolaji, O.S., Adeniyi, J.O., Radicella, S.M., and Doherty, P.H., Variability of total electron content over an equatorial West African station during low solar activity. Radio Sci., 2012, vol. 47, p. RS1001.

    Article  ADS  Google Scholar 

  15. Bolaji, O.S., Rabiu, A.B., Bello, O.R., Yoshikawa, A., Yumoto, K., Odeyemi, O.O., and Ogunmodimu, O., Spatial variability of solar quiet fields along 960 magnetic meridian in Africa: Results from MAGDAS, J. Geophys. Res., 2015, vol. 120, pp. 3883–3898. https://doi.org/10.1002/2014JA020728

    Article  Google Scholar 

  16. Bolaji, O.S., Oyeyemi, E.O., Owolabi, O.P., Yamazaki, Y., Rabiu, A.B., Okoh, D., Fujimoto, A., Amory-Mazaudier, C., and Yoshikawa, A., Solar quiet currents responses in the African sector due to a 2009 sudden stratospheric warming. J. Geophys. Res.: Space Phys., 2016, vol. 121. https://doi.org/10.1002/2016JA022857

  17. Bolaji, O.S., Adebiyi, S.J., and Fashae, J.B., Characterization of ionospheric irregularities at different longitudes during quiet and disturbed geomagnetic conditions, J. Atmos. Sol.-Terr. Phys., 2019a, vol. 182, pp. 93–100. https://doi.org/10.1016/j.jastp.2018.11.007

    Article  ADS  Google Scholar 

  18. Bolaji, O.S., Oyeyemi, E.O., Jimoh, O.E., Fujimoyo, A., Doherty, P.H., Owolabi, O.P., et al., Morphology of the equatorial ionization anomaly in Africa and Middle East due to a sudden stratospheric warming event, J. Atmos. Sol.-Terr. Phys., 2019b, vol. 184, pp. 37–56. https://doi.org/10.1016/j.jastp.2019.01.006

    Article  ADS  Google Scholar 

  19. Bolaji, O.S., Fashae, J.B., Adebiyi, S.J., Owolabi, C., Adebesin, B.O., Kaka, R.O., et al., Storm time effects on latitudinal distribution of ionospheric TEC in the American and Asian–Australian sectors: August 25–26, 2018 geomagnetic storm, J. Geophys. Res.: Space Phys., 2021, vol. 126, p. e2020JA029068. https://doi.org/10.1029/2020JA029068

  20. Bolaji, O.S., Kaka, R.O., Scales, W.A., Fashae, J.B., Peng, Y., Rabiu, A.B., Fadiji, J.O., and Ojelade, A., TEC and ROTI measurements from a new GPS receiver at BOWEN University, Nigeria, Atmosphere, 2023, vol. 14, p. 636. https://doi.org/10.3390/atmos14040636

    Article  ADS  Google Scholar 

  21. Burlaga, L.F., Sittler, E., Mariani, F., and Schwenn, R., Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations, J. Geophys. Res., 1981, vol. 86, no. A8, pp. 6673–6681. https://doi.org/10.1029/JA086iA08p06673

    Article  ADS  Google Scholar 

  22. Cannon, P., Extreme Space Weather: Impacts on Engineered Systems and Infrastructure, London: Royal Academy of Engineering, 2013. https://www.raeng.org.uk/spaceweather.

    Google Scholar 

  23. Carrano, C.S., Bridgwood, C.T., and Groves, K.M., Impacts of the December 2006 solar radio bursts on the performance of GPS, Radio Sci., 2009, vol. 44, p. RS0A25. https://doi.org/10.1029/2008RS004071

    Article  Google Scholar 

  24. Danilov, A.D. and Belik, L.D., Thermospheric–ionospheric interaction during geomagnetic storms, Geomagn. Aeron., 1991, vol. 31, no. 2, pp. 209–222.

    ADS  CAS  Google Scholar 

  25. Danilov, A.D., and Konstantinova, A.V., Behavior of the ionospheric F region prior to geomagnetic storms, Adv. Space Res., 2019, vol. 64, no. 7, pp. 1375–1387. https://doi.org/10.1016/j.asr.2019.07.014

    Article  ADS  Google Scholar 

  26. De Abreu, A.J., Fagundes, P.R., Sahai, Y., de Jesus, R., Bittencourt, J.A., Brunini, C., Gende, M., Pillat, V.G., Lima, W.L.C., Abalde, J.R., and Pimenta, A.A., Hemispheric asymmetries in the ionospheric response observed in the American sector during an intense geomagnetic storm, J. Geophys. Res.: Space Phys., 2010a, vol. 115, p. A12312. https://doi.org/10.1029/2010JA015661

    Article  ADS  Google Scholar 

  27. Dugassa, T., Habarulema, J.B., and Nigussie, M., Equatorial and low-latitude ionospheric TEC response to CIR-driven geomagnetic storms at different longitude sectors, Adv. Space Res., 2020, vol. 66, no. 8, pp. 1947–1966. https://doi.org/10.1016/j.asr.2020.07.003

    Article  ADS  Google Scholar 

  28. Fagundes, P.R., Cardoso, F.A., Fejer, B.G., Venkatesh, K., Ribeiro, B.A.G., and Pillat, V.G., Positive and negative GPS-TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector, J. Geophys. Res.: Space Phys., 2016, vol. 121, no. 6, pp. 5613–5625. https://doi.org/10.1002/2015JA022214

    Article  ADS  Google Scholar 

  29. Fagundes, P.R., Pezzopane, M., Habarulema, J.B., Venkatesh, K., Dias, M.A.L., Tardelli, A., de Abreu, A.J., Pillat, V.G., Pignalberi, A., Bolzan, M.J.A., Ribeiro, B.A.G., Vieira, F., Raulin, J.P., Denardini, C.M., Arcanjo, M.O., and Seemala, G.K., Ionospheric disturbances in a large area of the terrestrial globe by two strong solar flares of September 6, 2017, the strongest space weather events in the last decade, Adv. Space Res., 2020, vol. 66, no. 7, pp. 1775–1791. https://doi.org/10.1016/j.asr.2020.06.032

    Article  ADS  Google Scholar 

  30. Fagundes, P.R., Tsali-Brown, V.Y., Pillat, V.G., Arcanjo, M.O., Venkatesh, K., and Habarulema, J.B., and Denardini, C.M., Ionospheric storm due to solar Coronal mass ejection in September 2017 over the Brazilian and African longitudes, Adv. Space Res., 2022, vol. 71, no. 1, p. 21.

    Google Scholar 

  31. Fashae, J. B., Bolaji, O. S., and Rabiu, A. B., Response of the ionospheric TEC to SSW and associated geomagnetic storm over the American low latitudinal sector, Space Weather, 2022, vol. 20, p. e2021SW002999. https://doi.org/10.1029/2021SW002999

  32. Gonzalez, W.D., Gonzalez, A.L.C., and Tsurutani, B.T., Dual-peak solar cycle distribution of intense geomagnetic storms, Planet. Space Sci., 1990, vol. 38, no. 2, pp. 181–187. https://doi.org/10.1016/0032-0633(90)90082-2

    Article  ADS  Google Scholar 

  33. Gonzalez, W.D., Joselyn, J.A., Kamide, D., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M., What is a geomagnetic storm?, J. Geophys. Res., 1994, vol. 99, no. 6, pp. 5771–5792.

    Article  ADS  Google Scholar 

  34. Goodman, J.M., Operational communication systems and relationships to the ionosphere and space weather, Adv. Space Res., 2005, vol. 36, pp. 2241–2252. https://doi.org/10.1016/j.asr.2003.05.063

    Article  ADS  Google Scholar 

  35. Gopalswamy, N., Mäkelä, P., Xie, H., Akiyama, S., and Yashiro, S., CME interactions with coronal holes and their interplanetary consequences, J. Geophys. Res., 2009, vol. 114, p. A00A22. https://doi.org/10.1029/2008JA013686

    Article  ADS  Google Scholar 

  36. Groves, K., Basu, S., Weber, E.J., et al., Equatorial scintillation and systems support, Radio Sci., 1997, vol. 32, no. 5, pp. 2047–2064. https://doi.org/10.1029/97RS00836

    Article  ADS  Google Scholar 

  37. Guo, J., Feng, X., Emery, B. A., Zhang, J., Xiang, C., Shen, F., and Song, W., Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions, J. Geophys. Res., 2011, vol. 116, p. A05106. https://doi.org/10.1029/2011ja016490

    Article  ADS  Google Scholar 

  38. Hairston, M., Coley, W. R., and Stoneback, R., Responses in the polar and equatorial ionosphere to the March 2015 St. Patrick Day storm, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 11213–11234. https://doi.org/10.1002/2016JA023165

    Article  ADS  Google Scholar 

  39. Huang, C.S., Foster, J.C., Goncharenko, L.P., Erickson, P.J., Rideout, W., and Coster, A.J., A strong positive phase of ionospheric storms observed by the Millstone Hill incoherent scatter radar and global GPS network, J. Geophys. Res.: Space Phys., 2005, vol. 110, no. A6. https://doi.org/10.1029/2004JA010865

  40. Hunsucker, R.D. and Hargreaves, J.K., The High-Latitude Ionosphere and Its Effects on Radio Propagation, Cambridge University Press, 2003.

    Google Scholar 

  41. Imtiaz, N., Younas, W., and Khan, M., Response of the low- to mid-latitude ionosphere to the geomagnetic storm of September 2017, Ann. Geophys., 2020, vol. 38, no. 2, pp. 359–372. https://doi.org/10.5194/angeo-38-359-2020

    Article  ADS  CAS  Google Scholar 

  42. Jenan, R., Dammalage, T. L., and Panda, S. K., Ionospheric total electron content response to September-2017 geomagnetic storm and December-2019 annular solar eclipse over Sri Lankan region, Acta Astron., 2021, vol. 180, pp. 575–587. https://doi.org/10.1016/j.actaastro.2021.01.006

    Article  CAS  Google Scholar 

  43. Kikuchi, T., Lühr, H., Kitamura, T., Saka, O., and Schlegel, K., Direct penetration of the polar electric field to the equator during a DP2 event as detected by the auroral and equatorial magnetometer chains and the EISCAT radar, J. Geophys. Res., 1996, vol. 101, no. A8, pp. 17161–17173. https://doi.org/10.1029/96JA01299

    Article  ADS  Google Scholar 

  44. Kikuchi, T., Hashimoto, K.K., Kitamura, T.-I., Tachihara, H., and Fejer, B., Equatorial counter electrojet during sub storms, J. Geophys. Res., 2003, vol. 108, no. A11, p. 1406. https://doi.org/10.1029/2003JA009915

    Article  Google Scholar 

  45. Kil, H., Kwak, Y.-S., Paxton, L.J., Meier, R.R., and Zhang, Y., O and N2 disturbances in the F region during the 20 November 2003 storm seen from TIMED/GUVI, J. Geophys. Res. Space Phys., 2011, vol. 116, no. A2. https://doi.org/10.1029/2010ja016227

  46. Korenkov, Y.N., Klimenko, V.V., Klimenko, M.V., Bessarab, F.S., Korenkova, N.A., Ratovsky, K.G., Condor, P., et al., The global thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming event, J. Geophys. Res.: Space Phys., 2012, vol. 117, no. A10. https://doi.org/10.1029/2012ja018018

  47. Le Huy, M., and Amory-Mazaudier, C., Magnetic signature of the ionospheric disturbance dynamo at equatorial latitudes: “Ddyn”, J. Geophys. Res., 2005, vol. 110, p. A10301. https://doi.org/10.1029/2004JA010578

    Article  ADS  Google Scholar 

  48. Lee, C.C. and Reinisch, B.W., Quiet-condition hmF2, NmF2, and B0 variations at Jicamarca and comparison with IRI-2001 during solar maximum, J. Atmos. Sol. Terr. Phys., 2006, vol. 68, pp. 2138–2146. https://doi.org/10.1016/j.jastp.2006.07.007

    Article  ADS  Google Scholar 

  49. Lepping, R. P., Wu, C., and Berdichevsky, B. D., Yearly comparison of magnetic cloud parameters, sunspot number, and interplanetary quantities for the first 18 years of the Wind mission. Sol. Phys., 2015, vol. 290, pp. 553–578. https://doi.org/10.1007/s11207-014-0622-7

    Article  ADS  Google Scholar 

  50. Lissa, D., Srinivasu, V.K.D., Prasad, D.S.V.V.D., and Niranjan, K., Ionospheric response to the 26 August 2018 geomagnetic storm using GPS-TEC observations along 80°E and 120°E Longitudes in the Asian Sector, Adv. Space Res., 2020, vol. 66, pp. 1427–1440. https://doi.org/10.1016/j.asr.2020.05.025

    Article  ADS  CAS  Google Scholar 

  51. Liu, L. and Chen, Y., Statistical analysis of solar activity variations of total electron content derived at Jet Propulsion Laboratory from GPS observations, J. Geophys. Res., 2009, vol. 114, p. A10311.

    Article  ADS  Google Scholar 

  52. Liu, L., Wan, W., Ning, B., and Zhang, M.L., Climatology of the mean total electron content derived from GPS global ionospheric maps, J. Geophys. Res., 2009, vol. 114, p. A06308.

    Article  ADS  Google Scholar 

  53. Liu, R., and Zou, Y., Study of low-latitude ionospheric response to the 26 August 2018 geomagnetic storm using in situ satellite measurements, in 12th International Symposium on Antennas, Propagation and EM Theory, ISAPE, 2018, pp. 1–4. https://doi.org/10.1109/ISAPE.2018.8634197

  54. Liu, Y., Li, Z., Fu, L., Wang, J., and Zhang, C., Studying the ionospheric responses induced by a geomagnetic storm in September 2017 with multiple observations in America, GPS Solutions, 2019, vol. 24, no. 1. https://doi.org/10.1007/s10291-019-0916-1

  55. Marshall, R.A., Gorniak, H., Van Der Walt, T., Waters, C.L., Sciffer, M.D., Miller, M., Dalzell, M., Daly, T., Pouferis, G., Hesse, G., and Wilkinson, P., Observations of geomagnetically induced currents in the Australian power network, Space Weather, 2013, vol. 11, pp. 6–16. https://doi.org/10.1029/2012SW000849

    Article  ADS  Google Scholar 

  56. Mendillo, M., Bosheng, L., and Aarons, J., The application of GPS observations to equatorial aeronomy, Radio Sci., 2000, vol. 35, pp. 885–904.

    Article  ADS  Google Scholar 

  57. Nava, B., Rodríguez-Zuluaga, J., Alazo-Cuartas, K., Kashcheyev, A., Migoya-Orué, Y., Radicella, S.M., et al., Middle and low latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 3421–3438. https://doi.org/10.1002/2015ja022299

    Article  ADS  Google Scholar 

  58. Nishida, A., Geomagnetic DP2 fluctuations and associated magnetospheric phenomena, J. Geophys. Res., 1968, vol. 73, no. 5, pp. 1795–1803. https://doi.org/10.1029/JA073i005p01795

    Article  ADS  Google Scholar 

  59. Nishida, A., Iwasaki, N., and Nagata, N.T., The origin of fluctuations in the equatorial electrojet: A new type of geomagnetic variation, Ann. Geophys., 1966, vol. 22, pp. 478–484.

    Google Scholar 

  60. Oladipo, A. O., and Schüler, T., Magnetic storm effect on the occurrence of ionospheric irregularities at an equatorial station in the African sector, Ann. Geophys., 2013, vol. 56, p. A0565. https://doi.org/10.1016/j.jastp.2012.09.019

    Article  Google Scholar 

  61. Pi, X., Mannucci, A.J., Lindqwister, U.J., and Ho, C.M., Monitoring of global ionospheric irregularities using the worldwide GPS network, Geophys. Res. Lett., 1997, vol. 24, no. 18, pp. 2283–2286. https://doi.org/10.1029/97GL02273

    Article  ADS  CAS  Google Scholar 

  62. Prölss, G.W., Magnetic storm associated perturbations of the upper atmosphere: Recent results obtained by satellite-borne gas analyzers, Rev. Geophys., 1980, vol. 18, pp. 183–202. https://doi.org/10.1029/RG018i001p00183

    Article  ADS  Google Scholar 

  63. Prölss, G.W. and Werner, Vibrationally excited nitrogen and oxygen and the origin of negative ionospheric storms, J. Geophys. Res.: Space Phys., 2002, vol. 107, no. A2, p. 1016. https://doi.org/10.1029/2001JA900126

    Article  ADS  Google Scholar 

  64. Rabiu, A.B., Nagarajan, N., Okeke, F.N., Ariyibi, E.A., Olayanju, G.M., Joshua, E.O., and Chukwuma, V.U., A study of day to day variability in geomagnetic field variations at the electrojet zone of Addis Ababa, East Africa, Afr. J. Sci. Technol., 2007, vol. 8, no. 2, p. 55.

    Google Scholar 

  65. Rama Rao, P.V.S., Krishna, S.G., Niranjan, K., and Prasad, D.S.V.V.D., Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004–2005, Ann. Geophys., 2006, vol. 24, no. 12, pp. 3279–3292.

    Article  ADS  Google Scholar 

  66. Ren, D., Lei, J., Su, Z., Li, W., Huang, F., Luan, X., et al., High-speed solar wind Imprints on the ionosphere during the recovery phase of the August 2018 geomagnetic storm, Space Weather, 2020, vol. 18, p. e2020SW002480. https://doi.org/10.1029/2020SW002480

  67. Rishbeth, H., How the thermospheric circulation affects the ionosphere, J. Atmos. Sol. Terr. Phys., 1998, vol. 60, pp. 1385–1402. https://doi.org/10.1016/S1364-6826(98)00062-5

    Article  ADS  Google Scholar 

  68. Sanz, J., Juan, J.M., González-Casado, G., Prieto-Cerdeira, R., Schlüter, S., and Orús, R., Novel ionospheric activity indicator specifically tailored for GNSS users, in Proceedings of the 27th International Technical Meeting of The Satellite Division of The Institute of Navigation, Tampa, Fla., 2014, pp. 1173–1182.

  69. Seaton, M.J., A possible explanation of the drop in F-region critical densities accompanying major ionospheric storms, J. Atmos. Terr. Phys., 1956, vol. 8, p. 122.

    Article  ADS  Google Scholar 

  70. Senior, C. and Blanc, M., On the control of magnetospheric convection by the spatial distribution of ionospheric conductivities, J. Geophys. Res., 1984, vol. 89, no. A1, 261–284.

    Article  ADS  Google Scholar 

  71. Shimeis, A., Fathy, I., Amory-Mazaudier, C., Fleury, R., Mahrous, A. M., Yoshikawa, A., and Groves, K., Signature of the coronal near the north crest equatorial anomaly over Egypt during the strong geomagnetic storm 5 April 2010. J. Geophys. Res., 2012, vol. 117, p. A07309. https://doi.org/10.1029/2012JA017753

    Article  ADS  CAS  Google Scholar 

  72. Shreedevi, P.R., Thampi, S.V., Chakrabarty, D., Choudhary, R.K., Pant, T.K., Bhardwaj, A., and Mukherjee, S., On the latitudinal changes in ionospheric electrodynamics and composition based on observations over the 76–77 degrees E meridian from both hemispheres during a geomagnetic storm, J. Geophys. Res.: Space Phys., 2016, vol. 121, no. 2, pp. 1557–1568. https://doi.org/10.1002/2015JA021841

    Article  ADS  Google Scholar 

  73. Strickland, D.J., Daniell, R.E., and Craven, J.D., Negative ionospheric storm coincident with DE-1 observed thermospheric disturbance on October 14, 1981, J. Geophys. Res., 2001, vol. 106, no. 21, p. 049.

  74. Timoçin, E., Swarm satellite observations of the effect of prompt penetration electric fields (PPEFs) on plasma density around noon and midnight side of low latitudes during the 07–08 September 2017 geomagnetic storm, Adv. Space Res., 2022, https://doi.org/10.1016/j.asr.2021.11.027

  75. Tsurutani, B. T., Gonzalez, W. D., Guarnieri, F., Kamide, Y., Zhou, X., and Arballo, J. K., Are high-intensity long-duration continuous AE activity (HLDCAA) event substorm expansion events, J. Atmos. Sol.-Terr. Phys., 2004, vol. 66, pp. 167–176. https://doi.org/10.1016/j.jastp.2003.08.015

    Article  ADS  Google Scholar 

  76. Tsurutani, B.T., Verkhoglyadova, O.P., Mannucci, A.J., Lakhina, G.S., Li, G., and Zank, G.P., A brief review of “solar flare effects” on the ionosphere, Radio Sci., 2009, vol. 44, p. RS0A17. https://doi.org/10.1029/2008RS004029

    Article  Google Scholar 

  77. Tsurutani, B.T., Echer, E., Guarnieri, F.L., and Gonzalez, W.D., The properties of two solar wind high speed streams and related geomagnetic activity during the declining phase of solar cycle 23, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, pp. 164–177. https://doi.org/10.1016/j.jastp.2010.04.003

    Article  ADS  Google Scholar 

  78. Vasyliunas, V.M., Mathematical models of magnetospheric convection and its coupling to the ionosphere, in Particles and Fields in the Magnetosphere, McCormac, M.M., Ed., Dordrecht: Springer, 1970, pp. 60–71.

    Google Scholar 

  79. Vasyliunas, V.M., The inter-relationship of magnetospheric processes, in Earth’s Magnetosphere Processes, McCormac, M.M., Ed., Dordrecht: Springer, 1972, pp. 29–38.

    Google Scholar 

  80. Venkatesh, K., Ram, S.T., Fagundes, P.R., Seemala, G.K., and Batista, I.S., Electrodynamic disturbances in the Brazilian equatorial and low-latitude ionosphere on St. Patrick’s Day storm of 17 March 2015, J. Geophys. Res.: Space Phys., 2017, vol. 122, no. 4, pp. 4553–4570. https://doi.org/10.1002/2017JA024009

    Article  ADS  Google Scholar 

  81. Viljanen, A., The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks, Geophys. Res. Lett., 1997, vol. 24, pp. 631–634.

    Article  ADS  Google Scholar 

  82. Viljanen, A. and Pirjola, R., Geomagnetically induced currents in the Finnish high voltage power system, Surv. Geophys., 1994, vol. 15, pp. 383–408.

    Article  ADS  Google Scholar 

  83. Yan, X. L., Yang, L. H., Xue, Z. K., Mei, Z. X., Kong, D. F., Wang, J. C., and Li, Q. L., Simultaneous observation of a flux rope eruption and magnetic reconnection during an X-class solar flare, Astrophys. J. Lett., 2018, vol. 853, p. L18. https://doi.org/10.3847/2041-8213/aaa6c2

    Article  ADS  CAS  Google Scholar 

  84. Yasyukevich, Y., Astafyeva, E., Padokhin, A., Ivanova, V., Syrovatskii, S., and Podlesnyi, A., The 6 September 2017 X-class solar flares and their impacts on the ionosphere, GNSS, and HF radio wave propagation, Space Weather, 2018, vol. 16, pp. 1013–1027. https://doi.org/10.1029/2018SW001932

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yizengaw, E., and Groves, K.M., Longitudinal and seasonal variability of equatorial ionospheric irregularities and electrodynamics, Space Weather, 2018, vol. 16, pp. 946–968. https://doi.org/10.1029/2018SW001980

    Article  ADS  Google Scholar 

  86. Younas, W., Amory-Mazaudier, C., Khan, M., and Fleury, R., Ionospheric and magnetic signatures of a space weather event on 25-29 August 2018: CME and HSSWs, J. Geophys. Res.: Space Phys., 2020, vol. 125, p. e2020JA027981. https://doi.org/10.1029/2020JA027981

  87. Younas, W., Khan, M., Amory-Mazaudier, C., Amaechi, P. O., and Fleury, R., Middle and low latitudes hemispheric asymmetries in Σ O/N2 and TEC during intense magnetic storms of Solar Cycle 24, Adv. Space Res., 2022, vol. 69, no. 1, pp. 220–235.

    Article  ADS  CAS  Google Scholar 

  88. Yu, T., Wang, W., Ren, Z., Yue, J., Yue, X., and He, M., Middle–low latitude neutral composition and temperature responses to the 20 and 21 November 2003 superstorm from GUVI dayside limb measurements, J. Geophys. Res.: Space Phys., 2021, vol. 126, p. e2020JA028427. https://doi.org/10.1029/2020JA028427

  89. Zaourar, N., Amory-Mazaudier, C., and Fleury, R., Hemispheric asymmetries in the ionosphere response observed during the high-speed solar wind streams of the 24–28 August 2010, Adv. Space Res., 2017, vol. 59, pp. 2229–2247. https://doi.org/10.1016/j.asr.2017.01.048

    Article  ADS  Google Scholar 

  90. Zhang, Y., Paxton, L.J., Morrison, D., Wolven, B., Kil, H., Meng, C.-I., Mende, S.B., and Immel, T.J., O/N2 changes during 1–4 October 2002 storms: IMAGE SI-13 and TIMED/GUVI observations, J. Geophys. Res., 2004, vol. 109, p. A10308. https://doi.org/10.1029/2004JA010441

    Article  ADS  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The Author, Fashae Joshua Bankole appreciates and acknowledge the scientific organizations for providing data for this study. Such as NASA OMNIweb service, https://omniweb.gsfc.nasa.gov/, and the National Oceanic and Atmospheric Administration (NOAA), solar data service at https://www.ngdc.noaa.gov/stp/solar/solardataservices.html respectively. The GPS-TEC data used are freely downloaded online via National Aeronautics and Space Administration (NASA) Archive of Space Geodesy Data (cddis.nasa.gov/archive/gnss/data/) and SONEL (www.sonel.org). The magnetometer data were downloaded from the International Real-time Magnetic Observatory Network, INTERMAGNET (www.intermagnet.org) and the Low Ionospheric Sensor Network (LISN) magnetometers (http://lisn.igp.gob.pe/data/) operated by the Instituto Geofisico del Peru (IGP). The thermospheric O/N2 column density data is optically obtained from NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite (TIMED/GUVI) Far Ultraviolet (FUV) airglow instruments at http://guvitimed.jhuapl.edu. The authors appreciate all of these. Also, the authors thank Gopi Seemala for providing the GPS TEC processing software.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Fashae.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fashae, J.B. Response of the Equatorial Ionosphere over the South American Region to 8 September 2017 Geomagnetic Storm. Geomagn. Aeron. 63 (Suppl 1), S44–S58 (2023). https://doi.org/10.1134/S0016793223600844

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600844

Keywords:

Navigation