Skip to main content
Log in

Using Q-Statistics to Study Pulsating Auroras

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Tsallis nonextensive statistical mechanics (or q-statistics) has been used for the first time to study pulsating auroras, which are regularly observed in the auroral ionosphere during geomagnetic disturbances. For systems in which long-range interactions, such as ionized gas or plasma, take place and whose dynamics are determined primarily by long-range electromagnetic forces, it can be expected that nonadditive and nonextensive thermostatistic principles can characterize their macroscopic behavior. In this paper, we argued that pulsating auroras exhibit nonextensive properties and can be described, among other things, by q-statistics. We have also demonstrated that the non-extensive parameter q correlates well with the flatness index and with the scaling index, which indicates the applicability of this approach for auroral glow. Thus, q-statistics can be used to analyze phenomena in the high-latitude region of the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Abe, S. and Okamoto, Y., Eds., Nonextensive Statistical Mechanics and Its Application, Lecture Notes in Physics, Berlin: Springer, 2001, vol. 560. https://doi.org/10.1007/3-540-40919-X

  2. Abry, P., Flandrin, P., Taqqu, M.S., and Veitch, D., Wavelets for the analysis, estimation and synthesis of scaling data, in Self-Similar Network Traffic and Performance Evaluation, Park, K. and Willinger, W., Eds., New York: Wiley, 2000, pp. 39–88. https://doi.org/10.1002/047120644X.ch2

  3. Akasofu, S.-I., Polar and Magnetospheric Substorms, Dordrecht, Springer, 1968. https://doi.org/10.1007/978-94-010-3461-6

  4. Andrade, J.S., Almeida, M.P., Moreira, A.A., and Farias, G.A., Extended phase space dynamics for the generalized nonextensive thermostatistics, Phys. Rev. E, 2002, vol. 65, no. 3, p. 036121. https://doi.org/10.1103/PhysRevE.65.036121

    Article  ADS  CAS  Google Scholar 

  5. Antonova, E.E. and Ermakova, N.O., Kappa distribution functions and the main properties of auroral particle acceleration, Adv. Space Res., 2008, vol. 42, no. 5, pp. 987–991. https://doi.org/10.1016/j.asr.2007.04.045

    Article  ADS  Google Scholar 

  6. Arnold, B.C., Pareto Distributions, Fairland, Md.: International Cooperative Publishing House, 1983.

    Google Scholar 

  7. Aschwanden, M.J., Crosby, N.B., Dimitropoulou, M., et al., 25 years of self-organized criticality: Solar and astrophysics, Space Sci. Rev., 2016, vol. 198, nos. 1–4, pp. 47–166. https://doi.org/10.1007/s11214-014-0054-6

    Article  ADS  Google Scholar 

  8. Balasis, G., Daglis, I.A., Papadimitriou, C., Kalimeri, M., Anastasiadis, A., and Eftaxias, K., Dynamical complexity in Dst time series using non-extensive Tsallis entropy, Geophys. Res. Lett., 2008, vol. 35, no. 14, p. L14102. https://doi.org/10.1029/2008GL034743

    Article  ADS  Google Scholar 

  9. Balasis, G., Daglis, I.A., Papadimitriou, C., Anastasiadis, A., Sandberg, I., and Eftaxias, K., Quantifying dynamical complexity of magnetic storms and solar flares via nonextensive Tsallis entropy, Entropy, 2011, vol. 13, no. 12, pp. 1865–1881. https://doi.org/10.3390/e13101865

    Article  ADS  Google Scholar 

  10. Barbosa, C.S., Caraballo, R., Alves, L.R., Hartmann, G.A., Beggan, C.D., Viljanen, A., Ngwira, C.M., Papa, A.R.R., and Pirjola, R.J., The Tsallis statistical distribution applied to geomagnetically induced currents, Space Weather, 2017, vol. 15, no. 9, pp. 1094–1101. https://doi.org/10.1002/2017SW001631

    Article  ADS  Google Scholar 

  11. Barndorff-Nielsen, O.E. and Cox, D.R., Inference and Asymptotics, London: Chapman and Hall, 1994.

    Book  Google Scholar 

  12. Boltzmann, L., Vorlesungen über Gastheorie, Leipzig: J. A. Barth, 1896; Moscow: Gostekhizdat, 1953.

  13. Burlaga, L.F. and Viñas, A.F., Triangle for the entropic index q of non-extensive statistical mechanics observed by Voyager 1 in the distant heliosphere, Phys. A, 2006, vol. 361, no. 1, pp. 173–179. https://doi.org/10.1016/j.physa.2005.06.097

    Article  Google Scholar 

  14. Burlaga, L.F., Viñas, A.F., and Wang, C., Tsallis distributions of magnetic field strength variations in the heliosphere: 5 to 90 AU, J. Geophys. Res.: Space, 2007, vol. 112, no. 7, p. A07206. https://doi.org/10.1029/2006JA012213

    Article  ADS  Google Scholar 

  15. Castaing, B., Gagne, Y., and Hopfinger, E.J., Velocity probability density functions of high Reynolds number turbulence, Phys. D, 1990, vol. 46, no. 2, pp. 177–200. https://doi.org/10.1016/0167-2789(90)90035-N

    Article  Google Scholar 

  16. Chang, T., Tam, S.W.Y., and Wu, C.-C., Complexity induced anisotropic bimodal intermittent turbulence in space plasmas, Phys. Plasmas, 2004, vol. 11, no. 4, pp. 1287–1299. https://doi.org/10.1063/1.1667496

    Article  ADS  CAS  Google Scholar 

  17. Chernyshov, A.A., Mogilevsky, M.M., and Kozelov, B.V., Fractal approach to the description of the auroral region, Plasma Phys. Rep., 2013a, vol. 39, no. 7, pp. 562–571. https://doi.org/10.1134/S1063780X13060020

    Article  ADS  Google Scholar 

  18. Chernyshov, A.A., Mogilevsky, M.M., and Kozelov, B.V., Use of fractal approach to investigate ionospheric conductivity in the auroral zone, J. Geophys. Res.: Space, 2013b, vol. 118, no. 7, pp. 4108–4118. https://doi.org/10.1002/jgra.50321

    Article  ADS  Google Scholar 

  19. Chernyshov, A.A., Ilyasov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Influence of inhomogeneities of the plasma density and electric field on the generation of electrostatic noise in the auroral zone, Plasma Phys. Rep., 2015, vol. 41, no. 3, pp. 254–261. https://doi.org/10.1134/S1063780X15030010

    Article  ADS  Google Scholar 

  20. Chernyshov, A.A., Kozelov, B.V., and Mogilevsky, M.M., Study of auroral ionosphere using percolation theory and fractal geometry, J. Atmos. Sol.-Terr. Phys., 2017, vol. 161, pp. 127–133. https://doi.org/10.1016/j.jastp.2017.06.013

    Article  ADS  Google Scholar 

  21. Chernyshov, A.A., Chugunin D.V., and Mogilevsky M.M., Auroral kilometric radiation as a diagnostic tool for the properties of the magnetosphere, JETP Lett., 2022, vol. 115, no. 1, pp. 23–28. https://doi.org/10.1134/S0021364022010076

    Article  ADS  CAS  Google Scholar 

  22. Chisham, G. and Freeman, M.P., On the non-Gaussian nature of ionospheric vorticity, Geophys. Res. Lett., 2010, vol. 37, no. 12, p. L12103. https://doi.org/10.1029/2010GL043714

    Article  ADS  Google Scholar 

  23. Chisham, G. and Freeman, M.P., A statistical model of vorticity in the polar ionosphere and implications for extreme values, J. Geophys. Res.: Space, 2021, vol. 126, no. 11, p. e2021JA029307.

  24. Clauset, A., Shalizi, C.R., and Newman, M.E.J., Power-law distributions in empirical data, SIAM Rev., 2009, vol. 51, no. 4, pp. 661–703. https://doi.org/10.1137/070710111

    Article  ADS  MathSciNet  Google Scholar 

  25. Coxon, J.C., Chisham, G., Freeman, M.P., Anderson, B.J., and Fear, R.C., Distributions of Birkeland current density observed by ampere are heavy-tailed or long-tailed, J. Geophys. Res.: Space, 2022, vol. 127, no. 2, p. e2021JA029801. https://doi.org/10.1029/2021JA029801

  26. Curado, E.M.F. and Tsallis, C., Generalized statistical mechanics: Connection with thermodynamics, J. Phys. A, Math. Gen., 1991, vol. 24, no. 2, pp. L69–L72. https://doi.org/10.1088/0305-4470/24/2/004

    Article  ADS  MathSciNet  Google Scholar 

  27. de la Barra, E. and Vega-Jorquera, P., On q-pareto distribution: some properties and application to earthquakes, Eur. Phys. J. B, vol. 94, no. 1.

  28. Esquivel, A. and Lazarian, A., Tsallis statistics as a tool for studying interstellar turbulence, Astrophys. J., 2010, vol. 710, no. 1, pp. 125–132. https://doi.org/10.1088/0004-637X/710/1/125

    Article  ADS  Google Scholar 

  29. Gjerloev, J.W., The SuperMAG data processing technique, J. Geophys. Res.: Space, 2012, vol. 117, no. 9, p. A09213. https://doi.org/10.1029/2012JA017683

    Article  ADS  Google Scholar 

  30. Golovchanskaya, I.V., Kozelov, B.V., Sergienko, T.I., Brändström, U., Nilsson, H., and Sandahl, I., Scaling behavior of auroral luminosity fluctuations observed by Auroral Large Imaging System (ALIS), J. Geophys. Res.: Space, 2008, vol. 113, no. 10, p. A10303. https://doi.org/10.1029/2008JA013217

    Article  ADS  CAS  Google Scholar 

  31. Golovchanskaya, I.V., Kozelov, B.V., and Despirak, I.V., Investigation of the broadband ELF turbulence by observations of the FAST satellite, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 4, pp. 474–481.

  32. Golovchanskaya, I.V., Kozelov, B.V., Chernyshov, A.A., Il’yasov, A.A., and Mogilevskii, M.M., Possible mechanism for damping of electrostatic instability related to inhomogeneous distribution of energy density in the auroral ionosphere, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 2, pp. 223–228. https://doi.org/10.1134/S0016793218020081

  33. Ilyasov, A.A., Chernyshov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Inhomogeneities of plasma density and electric field as sources of electrostatic turbulence in the auroral region, Phys. Plasmas, 2015, vol. 22, no. 3, p. 032906. https://doi.org/10.1063/1.4916125

    Article  ADS  CAS  Google Scholar 

  34. Ilyasov, A.A., Chernyshov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Influences of shear in the ion parallel drift velocity and of inhomogeneous perpendicular electric field on generation of oblique ion acoustic waves, J. Geophys. Res.: Space, 2016, vol. 121, no. 3, pp. 2693–2703. https://doi.org/10.1002/2015JA022117

    Article  ADS  Google Scholar 

  35. Kaeppler, S.R., Nicolls, M.J., Strømme, A., Kletzing, C.A., and Bounds, S.R., Observations in the E region ionosphere of kappa distribution functions associated with precipitating auroral electrons and discrete aurorae, J. Geophys. Res.: Space, 2014, vol. 119, no. 12, pp. 10164–10183. https://doi.org/10.1002/2014JA020356

    Article  Google Scholar 

  36. Klimas, A., Uritsky, V., and Donovan, E., Multiscale auroral emission statistics as evidence of turbulent reconnection in Earth’s midtail plasma sheet, J. Geophys. Res.: Space, 2010, vol. 115, no. 6. p. A06202. https://doi.org/10.1029/2009JA014995

    Article  ADS  Google Scholar 

  37. Klimov, P., Kalegaev, V., Sigaeva, K., Ivanova, A., Antonyuk, G., Benghin, V., and Zolotarev, I., Near-UV pulsations in the aurora region measured by orbital telescope TUS during high-intensity and long-duration continuous AE activity, Remote Sens., 2022, vol. 15, no. 1, p. 147. https://doi.org/10.3390/rs15010147

    Article  ADS  Google Scholar 

  38. Kozelov, B.V., Fractal approach to description of the auroral structure, Ann. Geophys., 2003, vol. 21, no. 9, pp. 2011–2023. https://doi.org/10.5194/angeo-21-2011-2003

    Article  ADS  Google Scholar 

  39. Kozelov, B.V. and Golovchanskaya, I.V., Derivation of aurora scaling parameters from ground-based imaging observations: numerical tests, J. Geophys. Res.: Space, vol. 115, no. 2, p. A02204. https://doi.org/10.1029/2009JA014484

  40. Kozelov, B.V. and Rypdal, K., Spatial scaling of optical fluctuations during substorm-time aurora, Ann. Geophys., 2007, vol. 25, no. 4, pp. 915–927. https://doi.org/10.5194/angeo-25-915-2007

    Article  ADS  Google Scholar 

  41. Kozelov, B.V. and Vjalkova, N.Y., Search of temporal chaos in TV images of aurora, Int. J. Geomagn. Aeron., 2005, vol. 5, no. 3, p. GI3005. https://doi.org/10.1029/2005GI000102

    Article  Google Scholar 

  42. Kozelov, B.V., Uritsky, V.M., and Klimas, A.J., Power law probability distributions of multiscale auroral dynamics from ground-based TV observations, Geophys. Res. Lett., 2004, vol. 31, no. 20, p. L20804. https://doi.org/10.1029/2004GL020962

    Article  ADS  Google Scholar 

  43. Kuz’min, A.K., Background conditions and the influence of various light factors on auroral emission intensity distribution images obtained from spacecraft orbits, Vopr-. Elektromekh. Tr. VNIIEM, 2020, vol. 175, no. 2, pp. 14–41.

    Google Scholar 

  44. Leubner, M.P. and Vörös, Z., A nonextensive entropy path to probability distributions in solar wind turbulence, Nonlinear Proc. Geophys., 2005, vol. 12, no. 2, pp. 171–180. https://doi.org/10.5194/npg-12-171-2005

    Article  ADS  Google Scholar 

  45. Liu, B. and Goree, J., Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma, Phys. Rev. Lett., 2008, vol. 100, no. 5, p. 055003. https://doi.org/10.1103/PhysRevLett.100.055003

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Lui, A.T.Y., Chapman, S.C., Liou, K., Newell, P.T., Meng, C.I., Brittnacher, M., and Parks, G.K., Is the dynamic magnetosphere an avalanching system?, Geophys. Res. Lett., 2000, vol. 27, no. 7, pp. 911–914. https://doi.org/10.1029/1999GL010752

    Article  ADS  Google Scholar 

  47. Mariz, A.M., On the irreversible nature of the Tsallis and Renyi entropies, Phys. Lett. A, 1992, vol. 165, nos. 5–6, pp. 409–411. https://doi.org/10.1016/0375-9601(92)90339-N

    Article  ADS  MathSciNet  Google Scholar 

  48. Maxwell, J.C. IV, On the dynamical theory of gases, Philos. Trans. R. Soc., 1867, vol. 157, pp. 49–88. https://doi.org/10.1098/rstl.1867.0004

    Article  ADS  Google Scholar 

  49. Milovanov, A.V. and Zelenyi, L.M., Functional background of the Tsallis entropy: “Coarse-grained” systems and “kappa” distribution functions, Nonlinear Proc. Geophys., 2000, vol. 7, nos. 3–4, pp. 211–221. https://doi.org/10.5194/npg-7-211-2000

    Article  ADS  Google Scholar 

  50. Namgaladze, A.N., Raspopov, O.M., and Roldugin, V.K., Relationship between Pi2 geomagnetic field pulsations and auroral intensity pulsations, Geomagn. Aeron., 1967, vol. 7, no. 2, pp. 376–378.

    Google Scholar 

  51. Nauenberg, M., Critique of q-entropy for thermal statistics, Phys. Rev. E, 2003, vol. 67, no. 3, p. 036114. https://doi.org/10.1103/PhysRevE.67.036114

    Article  ADS  CAS  Google Scholar 

  52. Newell, P.T. and Gjerloev, J.W., Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power, J. Geophys. Res.: Space, 2011, vol. 116, no. 12, p. A12211. https://doi.org/10.1029/2011JA016779

    Article  ADS  Google Scholar 

  53. Paladin, G. and Vulpiani, A., Anomalous scaling laws in multifractal objects, Phys. Rep., 1987, vol. 156, no. 4, pp. 147–225. https://doi.org/10.1016/0370-1573(87)90110-4

    Article  ADS  MathSciNet  Google Scholar 

  54. Papadimitriou, C., Balasis, G., Boutsi, A.Z., Daglis, I.A., Giannakis, O., Anastasiadis, A., De Micheles, P., and Consolini, G., Dynamical complexity of the 2015 St. Patrick’s Day magnetic storm at Swarm altitudes using entropy measures, Entropy, 2020, vol. 22, no. 5, p. 574. https://doi.org/10.3390/e22050574

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  55. Paschmann, G., Haaland, S., Treumann, R., et al., Auroral plasma physics, Space Sci. Rev., 2002, vol. 103, nos. 1–4, pp. 1–475.

    Article  Google Scholar 

  56. Pavlos, G.P., Iliopoulos, A.C., Zastenker, G.N., Zelenyi, L.M., Karakatsanis, L.P., Riazantseva, M.O., Xenakis, M.N., and Pavlos, E.G., Tsallis non-extensive statistics and solar wind plasma complexity, Phys. A, 2015, vol. 422, pp. 113–135. https://doi.org/10.1016/j.physa.2014.12.007

    Article  MathSciNet  Google Scholar 

  57. Pitman, E.J.G., Some Basic Theory for Statistical Inference, New York: Chapman and Hall, 1979. https://doi.org/10.1201/9781351076777.

  58. Plastino, A.R., Plastino, A., and Tsallis, C., The classical N-body problem within a generalized statistical mechanics, J. Phys. A: Math. Gen., 1994, vol. 27, no. 17, pp. 5707–5714. https://doi.org/10.1088/0305-4470/27/17/008

    Article  ADS  MathSciNet  Google Scholar 

  59. Ramshaw, J.D., H-theorems for the Tsallis and Renyi entropies, Phys. Lett. A, 1993, vol. 175, nos. 3–4, pp. 169–170. https://doi.org/10.1016/0375-9601(93)90820-P

    Article  ADS  MathSciNet  Google Scholar 

  60. Renyi, A., On a new axiomatic theory of probability, Acta Math. Hung., 1955, vol. 6, nos. 3–4, pp. 285–335. https://doi.org/10.1007/BF02024393

    Article  MathSciNet  Google Scholar 

  61. Renyi, A., Probability Theory, Budapest: Akad. Kiadó, 1970.

    Google Scholar 

  62. Shalizi, C.R., Maximum likelihood estimation for q-exponential (Tsallis) distributions, arXiv:math/0701854, 2007. https://arxiv.org/pdf/math/0701854.pdf.

  63. Silva, J.R., Plastino, A.R., and Lima, J.A.S., A Maxwellian path to the q-nonextensive velocity distribution function, Phys. Lett. A, 1998, vol. 249, nos. 5–6, pp. 401–408. https://doi.org/10.1016/S0375-9601(98)00710-5

    Article  ADS  MathSciNet  CAS  Google Scholar 

  64. Stepanova, M.V., Antonova, E.E., and Troshichev, O., Intermittency of magnetospheric dynamics through non-Gaussian distribution function of PC-index fluctuations, Geophys. Res. Lett., 2003, vol. 30, no. 3, p. 1127. https://doi.org/10.1029/2002GL016070

    Article  ADS  Google Scholar 

  65. Tam, S.W.Y., Chang, T., Kintner, P.M., and Klatt, E., Intermittency analyses on the sierra measurements of the electric field fluctuations in the auroral zone, Geophys. Res. Lett., 2005, vol. 32, no. 5, p. 105109. https://doi.org/10.1029/2004GL021445

    Article  ADS  Google Scholar 

  66. Tsallis, C., Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys., 1988, vol. 52, nos. 1–2, pp. 479–487. https://doi.org/10.1007/BF01016429

    Article  ADS  MathSciNet  Google Scholar 

  67. Tsallis, C., Non-extensive thermostatistics: Brief review and comments, Phys. A, 1995, vol. 221, no. 1, pp. 277–290. https://doi.org/10.1016/0378-4371(95)00236-Z

    Article  MathSciNet  Google Scholar 

  68. Tsallis, C., Introduction to Nonextensive Statistical Mechanics, Springer, 2009. https://doi.org/10.1007/978-0-387-85359-8.

  69. Unnikrishnan, K. and Richards, P., How does solar eclipse influence the complex behavior of midlatitude ionosphere? Two case studies, J. Geophys. Res.: Space, 2014, vol. 119, no. 2, pp. 1157–1171. https://doi.org/10.1002/2013JA018708

    Article  ADS  CAS  Google Scholar 

  70. Van Rhijn, P.J., On the brightness of the sky at night and total amount of the starlight, Publ. Kapteyn Astron. Lab. Groningen, 1921, vol. 31, pp. 1–83.

    ADS  Google Scholar 

  71. Watkins, N.W., Credgington, D., Hnat, B., Chapman, S.C., Freeman, M.P., and Greenhough, J., Towards synthesis of solar wind and geomagnetic scaling exponents: A fractional Levy motion model, Space Sci. Rev., 2005, vol. 121, nos. 1–4, pp. 271–284. https://doi.org/10.1007/s11214-006-4578-2

    Article  ADS  Google Scholar 

  72. Yamamoto, T., On the temporal fluctuations of pulsating auroral luminosity, J. Geophys. Res.: Space, 1988, vol. 93, no. 2, pp. 897–911. https://doi.org/10.1029/JA093iA02p00897

    Article  ADS  Google Scholar 

  73. Zanette, D.H. and Montemurro, M.A., Thermal measurements of stationary nonequilibrium systems: A test for generalized thermostatistics, Phys. Lett. A, 2003, vol. 316, nos. 3–4, pp. 184–189. https://doi.org/10.1016/S0375-9601(03)01151-4

    Article  ADS  CAS  Google Scholar 

  74. Zelenyi, L.M. and Milovanov, A.V., Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics, Phys.-Usp., 2004, vol. 47, no. 8, pp. 749–788. https://doi.org/10.1070/PU2004v047n08ABEH001705

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Optical data from the all-sky camera used in this study are available on the website http://aurora.pgia.ru/. Data on geomagnetic activity indices, as well as OMNI data, were taken from the SuperMAG website (http://supermag.jhuapl.edu/info).

Funding

A.A. Chernyshov expresses gratitude for the support of the Theoretical Physics and Mathematics Advancement Foundation “BASIS” Work by B.V. Kozelov for processing primary optical observation data and studying the structure of pulsating auroras was supported by the Russian Science Foundation (project no. 22-12-20 017 “Spatio-temporal Structures in the near-Earth Space of the Arctic: from Auroras through the Features of Plasma Self-Organization to the Radio Waves Propagation”). A comprehensive analysis of the geophysical situation during the considered substorm and a comparison of various parameters characterizing auroras were carried out by A.A. Chernyshov and M.M. Mogilevsky within the state task of the Space Research Institute of the Russian Academy of Sciences (topic “Plasma,” state registration no. 122042700118-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Chernyshov, B. V. Kozelov or M. M. Mogilevsky.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Seifina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyshov, A.A., Kozelov, B.V. & Mogilevsky, M.M. Using Q-Statistics to Study Pulsating Auroras. Geomagn. Aeron. 64, 49–60 (2024). https://doi.org/10.1134/S0016793223600789

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600789

Navigation