Skip to main content
Log in

Performance Analysis of NeQuick-G, IRI-2016, IRI-Plas 2017 and AfriTEC Models over the African Region during the Geomagnetic Storm of March 2015

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

This paper investigates the diurnal variations of modelled and observed vertical total electron content (VTEC) over the African region (40° N to +40° S, 25° W to 65° E) obtained from ground-based global navigation satellite system (GNSS) receivers. The investigations on ionospheric response during the super geomagnetic storm time (March 17 2015) are crucial, especially over African low latitudes. Hence, the performance of ionospheric models has been evaluated in this paper. The VTEC predictability by regional/global ionospheric models (AfriTEC, IRI-2016, IRI-Plas 2017, GIM-CODE, and Nequick-G) is assessed by using root mean square error (RMSE) method and percentage deviation by comparing the GPS/GNSS-VTEC obtained from 10 IGS (International GNSS Service) stations with the modelled-VTEC values over the African region. The peculiarity in VTEC values is evident during the superstorm’s sudden commencement compared to the pre- and post-storm periods. Northern hemisphere GPS station TEC data showed a twin peak in the daily VTEC patterns. The enhanced VTEC values were observed over all the selected 10 IGS stations on the storm day than on other quiet days. Moreover, during the post-storm days (March 18–20, 2015), these VTEC values decreased more than on quiet days over the IGS stations in the southern hemisphere (MBAR, MAYG, HARB, SBOK). On the other hand, during the post-storm days (March 18–20, 2015), the VTEC values remained high over the geomagnetic northern hemisphere (NOT1, SFER, MAS1, CPVG, NKLG). It is worth mentioning that three northern IGS stations (NOT1, SFER, and MAS1) displayed a VTEC increase record of approximately 75–90% due to the extension of equatorial ionization anomaly (EIA) during the geomagnetic storm. In contrast, the other northern stations at the EIA trough region (CPVG, BJCO, NKLG) registered a VTEC increment of 7, 26, and 25%, respectively. Southern IGS stations registered an enhancement in VTEC of about 5%. The VTEC maps from AfriTEC, IRI-2016, and Nequick-G were able to predict the feature of EIA at around 20° N/15° S. The GPS-VTEC values at IGS stations located on the geomagnetic EIA crests (in both northern and southern hemispheres) and in the trough (equatorial stations) are higher than those of the IGS stations situated at mid-latitudes. AfriTEC, a regional model, recorded the lowest RMSE values over all the stations. The prediction results show that the regional model performance is better than the global ionospheric models (IRI-2016 and Nequick-G models), especially over EIA latitudes of the African region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Adewale, A.O., Oyeyemi, E.O., Adeloye, A.B., Mitchell, C.N., Rose, J.A., and Cilliers, P.J., A study of L-band scintillations and total electron content at an equatorial station, Lagos, Nigeria, Radio Sci., 2012, vol. 47, no. 2, pp. 1–12. https://doi.org/10.1029/2011RS004846

    Article  Google Scholar 

  2. Ahoua, S.M., Habarulema, J.B., Obrou, O.K., Cilliers, P.J., and Zaka, Z.K., Evaluation of the NeQuick model performance under different geomagnetic conditions over South Africa during the ascending phase of the solar cycle (2009–2012), Ann. Geophys., 2018, vol. 36, no. 5, pp. 1161–1170. https://doi.org/10.5194/angeo-36-1161-2018

    Article  ADS  Google Scholar 

  3. Akala, A.O. and Adewusi, E.O., Quiet-time and storm-time variations of the African equatorial and low latitude ionosphere during 2009–2015, Adv. Space Res., 2020, vol. 66, no. 6, pp. 1441–1459. https://doi.org/10.1016/j.asr.2020.05.038

  4. Akala, A.O., Doherty, P.H., Carrano, C.S., Valladares, C.E., and Groves, K.M., Impacts of ionospheric scintillations on GPS receivers intended for equatorial aviation applications, Radio Sci., 2012, vol. 47, no. 4, pp. 1–11. https://doi.org/10.1029/2012RS004995

    Article  Google Scholar 

  5. Akala, A.O., Seemala, G.K., Doherty, P.H., Valladares, C.E., Carrano, C.S., Espinoza, J., and Oluyo, S., Comparison of equatorial GPS-TEC observations over an African station and an American station during the minimum and ascending phases of solar cycle 24, Ann. Geophys., 2013, vol. 31, no. 11, pp. 2085–2096. https://doi.org/10.5194/angeo-31-2085-2013

    Article  ADS  Google Scholar 

  6. Akala, A.O., Ejalonibu, A.H., Doherty, P.H., Radicella, S.M., Groves, K.M., Carrano, C.S., and Stoneback, R. A., Characterization of GNSS amplitude scintillations over Addis Ababa during 2009–2013, Adv. Space Res., 2017, vol. 59, no. 8, pp. 1969–1983. https://doi.org/10.1016/j.asr.2017.01.044

    Article  ADS  CAS  Google Scholar 

  7. Akala, A.O., Oyeyemi, E.O., Arowolo, O.A., and Doherty, P.H., Characterization of GPS and EGNOS amplitude scintillations over the African equatorial/low-latitude region, Adv. Space Res., 2019, vol. 63, no. 9, pp. 3062–3075. https://doi.org/10.1016/j.asr.2019.01.021

    Article  ADS  Google Scholar 

  8. Amaechi, P.O., Oyeyemi, E.O., and Akala, A.O., Geomagnetic storm effects on the occurrences of ionospheric irregularities over the African equatorial/low-latitude region, Adv. Space Res., 2018, vol. 61, no. 8, pp. 2074–2090. https://doi.org/10.1016/j.asr.2018.01.035

    Article  ADS  Google Scholar 

  9. Anoruo, C.M., Rabiu, B., Okoh, D., Okeke, F.N., and Okpa-la, K.C., Irregularities in the African ionosphere associated with total electron content anomalies observed during high solar activity levels, Front. Astron. Space Sci., 2022, vol. 9, p. 947473. https://doi.org/10.3389/fspas.2022.947473

    Article  ADS  Google Scholar 

  10. Ansari, K., Park, K.D., and Kubo, N., Linear time-series modeling of the GNSS based TEC variations over Southwest Japan during 2011–2018 and comparison against ARMA and GIM models, Acta Astron., 2019, vol. 165, pp. 248–258. https://doi.org/10.1016/j.actaastro.2019.09.017

    Article  Google Scholar 

  11. Astafyeva, E., Zakharenkova, I., and Förster, M., Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview, J. Geophys. Res.: Space Phys., 2015, vol. 120, no. 10, pp. 9023–9037. https://doi.org/10.1002/2015JA021629

    Article  ADS  Google Scholar 

  12. Basu, S., Groves, K.M., Quinn, J.M., and Doherty, P., A comparison of TEC fluctuations and scintillations at Ascension Island, J. Atmos. Sol.-Terr. Phys., 1999, vol. 61, no. 16, pp. 1219–1226. https://doi.org/10.1016/S1364-6826(99)00052-8

    Article  ADS  CAS  Google Scholar 

  13. Bilitza, D., Altadill, D., Zhang, Y., Mertens, C., Truhlik, V., Richards, P., and Reinisch, B., The International Reference Ionosphere 2012: A model of international collaboration, J. Space Weather Space Clim., 2014, vol. 4, no. 7. https://doi.org/10.1051/swsc/2014004

  14. Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., and Huang, X., International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions, Space Weather, 2017, vol. 15, no. 2, pp. 418–429. https://doi.org/10.1002/2016SW001593

    Article  ADS  Google Scholar 

  15. Cander, L.R., Towards forecasting and mapping ionospheric space weather under COST actions, Adv. Space Res., 2013, vol. 31, no. 4, pp. 957–964. https://doi.org/10.1016/S0273-1177(02)00793-7

    Article  ADS  Google Scholar 

  16. Carrington, R.C., Description of a singular appearance seen in the Sun on September 1, 1859, Mon. Not. R. Astron. Soc., 1859, vol. 20, no. 1, pp. 13–15. https://doi.org/10.1093/mnras/20.1.13

    Article  ADS  Google Scholar 

  17. Chakraborty, S., Datta, A., Ray, S., Ayyagari, D., and Paul, A., Comparative studies of ionospheric models with GNSS and NavIC over the Indian longitudinal sector during geomagnetic activities, Adv. Space Res., 2020, vol. 66, no. 4, pp. 895–910. https://doi.org/10.1016/j.asr.2020.04.047

    Article  ADS  Google Scholar 

  18. Chekole, D.A., Giday, N.M., and Nigussie, M., Performance of NeQuick-2, IRI-Plas 2017 and GIM models over Ethiopia during varying solar activity periods. J. Atmos. Sol.-Terr. Phys., 2019, vol. 195, p. 105117. https://doi.org/10.1016/j.jastp.2019.105117

    Article  Google Scholar 

  19. Cherniak, I. and Zakharenkova, I., NeQuick and IRI-Plas model performance on topside electron content representation: Spaceborne GPS measurements, Radio Sci., 2016, vol. 51, no. 6, pp. 752–766. https://doi.org/10.1002/2015RS005905

    Article  ADS  Google Scholar 

  20. Cilliers, P.J. and Olwendo, J., Observations of ionospheric irregularities in the low and mid latitude regions across the Africa–Europe sector during 2014, at the peak of solar cycle 24, in 2020 XXXIII General Assembly and Scientific Symposium of the International Union of Radio Science, IEEE, 2020, pp. 1–3. https://doi.org/10.23919/URSIGASS49373.2020.9232339

  21. D’Angelo, G., Piersanti, M., Alfonsi, L., Spogli, L., Clausen, L. B. N., Coco, I., and Baiqi, N., The response of high latitude ionosphere to the 2015 St. Patrick’s Day storm from in situ and ground based observations, Adv. Space Res., 2018, vol. 62, no. 3, pp. 638–650. https://doi.org/10.1016/j.asr.2018.05.005

    Article  ADS  Google Scholar 

  22. Danilov, A.D., Prestorm ionospheric disturbances: Precursors or Q-disturbances?, Adv. Space Res., 2022, vol. 69, no. 1, pp. 159–167. https://doi.org/10.1016/j.asr.2021.09.027

    Article  ADS  Google Scholar 

  23. Danilov, A.D. and Konstantinova, A.V., Behavior of the ionospheric F region prior to geomagnetic storms, Adv. Space Res., 2019a, vol. 64, no. 7, pp. 1375–1387. https://doi.org/10.1016/j.asr.2019.07.014

    Article  ADS  Google Scholar 

  24. Danilov, A.D. and Konstantinova, A.V., Ionospheric precursors of geomagnetic storms. I. A review of the problem, Geomagn. Aeron. (Engl. Transl.), 2019b, vol. 59, no. 5, pp. 554–566. https://doi.org/10.1134/S0016793219050025

  25. Dugassa, T., Mezgebe, N., Habarulema, J.B., Habyarimana, V., and Oljira, A., Ionospheric response to the 23–31 August 2018 geomagnetic storm in the Europe–African longitude sector using multi-instrument observations, Adv. Space Res., 2023, vol. 71, no. 5, pp. 2269–2287. https://doi.org/10.1016/j.asr.2022.10.063

    Article  ADS  Google Scholar 

  26. Ezquer, R.G., Scida, L.A., Orué, Y.M., Nava, B., Cabrera, M.A., and Brunini, C., NeQuick2 and IRI Plas VTEC predictions for low latitude and South American sector, Adv. Space Res., 2018, vol. 61, no. 7, pp. 1803–1818. https://doi.org/10.1016/j.asr.2017.10.003

    Article  ADS  Google Scholar 

  27. Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., and Tsurutani, B.T., and Vasyliunas, V.M., What is a geomagnetic storm?, J. Geophys. Res.: Space Phys., 1994, vol. 99, no. 4, pp. 5771–5792. https://doi.org/10.1029/93JA02867

    Article  ADS  Google Scholar 

  28. Gonzalez, W.D., Echer, E., Clua-Gonzalez, A.L., and Tsurutani, B.T., Interplanetary origin of intense geomagnetic storms (Dst < –100 nT) during solar cycle 23, Geophys. Res. Lett., 2007, vol. 34, no. 6. https://doi.org/10.1029/2006GL028879

  29. Gulyaeva, T.L., International standard model of the Earth’s ionosphere and plasmasphere, Astron. Astrophys. Trans., 2003, vol. 22, nos. 4–5, pp. 639–643. https://doi.org/10.1080/10556790308565760

    Article  ADS  Google Scholar 

  30. Gulyaeva, T.L., Arikan, F., and Stanislawska, I., Inter-hemispheric imaging of the ionosphere with the upgraded IRI-Plas model during the space weather storms, Earth, Planets Space, 2011, vol. 63, no. 8, pp. 929–939. https://doi.org/10.5047/eps.2011.04.007

    Article  ADS  Google Scholar 

  31. Kane, R.P., Storm-time variations of F2, Ann. Geophys., 1973a, vol. 29, no. 1, pp. 25–42.

    Google Scholar 

  32. Kane, R.P., Global evolution of F2-region storms, J. Atmos. Sol.-Terr. Phys., 1973b, vol. 35, no. 11, pp. 1953–1966. https://doi.org/10.1016/0021-9169(73)90112-8

    Article  ADS  Google Scholar 

  33. Kashcheyev, A., Migoya-Orué, Y., Amory-Mazaudier, C., Fleury, R., Nava, B., Alazo-Cuartas, K., and Radicella, S.M., Multivariable comprehensive analysis of two great geomagnetic storms of 2015, J. Geophys. Res.: Space Phys., 2018, vol. 123, no. 6, pp. 5000–5018. https://doi.org/10.1029/2017JA024900

    Article  ADS  Google Scholar 

  34. Klobuchar, J.A., Ionospheric effects on GPS, in Global Positioning System: Theory and Applications, American Institute of Aeronautics and Astronautics, 1996, vol. 1, pp. 485–515.

    Google Scholar 

  35. Maltseva, O.A., Zhbankov, G.A., and Mozhaeva, N.S., Advantages of the new model of IRI (IRI-Plas) to simulate the ionospheric electron density: case of the European area, Adv. Space Res., 2013, vol. 11, no. 2, pp. 307–311. https://doi.org/10.5194/ars-11-307-2013

    Article  Google Scholar 

  36. Matamba, T. M., and Danskin, D. W., Variation of TEC over South Africa during a geomagnetic storm, in 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), IEEE, 2022, pp. 1–4. https://doi.org/10.23919/AT-AP-RASC54737.2022.9814299

  37. Mengistu, E., Moldwin, M.B., Damtie, B., and Nigussie, M., The performance of IRI-2016 in the African sector of equatorial ionosphere for different geomagnetic conditions and time scales, J. Atmos. Sol.-Terr. Phys., 2019, vol. 186, pp. 116–138. https://doi.org/10.1016/j.jastp.2019.02.006

    Article  ADS  Google Scholar 

  38. Moses, M., Dodo, J.D., Ojigi, L.M., and Lawal, K., Regional TEC modelling over Africa using deep structured supervised neural network, Geod. Geodyn., 2020, vol. 11, no. 5, pp. 367–375. https://doi.org/10.1016/j.geog.2020.05.004

    Article  Google Scholar 

  39. Nava, B., Coisson, P., and Radicella, S.M., A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, no. 15, pp. 1856–1862. https://doi.org/10.1016/j.jastp.2008.01.015

    Article  ADS  Google Scholar 

  40. Nava, B., Rodríguez-Zuluaga, J., Alazo-Cuartas, K., Kashcheyev, A., Migoya-Orué, Y., Radicella, S.M., and Fleury, R., Middle-and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm, J. Geophys. Res.: Space Phys., 2016, vol. 121, no. 4, pp. 3421–3438. https://doi.org/10.1002/2015JA022299

    Article  ADS  Google Scholar 

  41. Okoh, D., Seemala, G., Rabiu, B., Habarulema, J.B., Jin, S., Shiokawa, K., and Shetti, D., A neural network-based ionospheric model over Africa from Constellation Observing System for Meteorology, Ionosphere, and Climate and Ground Global Positioning System observations, J. Geophys. Res.: Space Phys., 2019, vol. 124, no. 12, pp. 10512–10532. https://doi.org/10.1029/2019JA027065

    Article  ADS  Google Scholar 

  42. Okoh, D., Habarulema, J.B., Rabiu, B., Seemala, G., Wisdom, J.B., Olwendo, J., and Matamba, T.M., Storm-time modeling of the African regional ionospheric total electron content using artificial neural networks, Space Weather, 2020, vol. 18, no. 9, p. e2020SW002525. https://doi.org/10.1029/2020SW002525

  43. Ramsingh, S.S., Sreekumar, S., Banola, S., Emperumal, K., Tiwari, P., and Kumar, B.S., Low-latitude ionosphere response to super geomagnetic storm of 17/18 March 2015: Results from a chain of ground-based observations over Indian sector, J. Geophys. Res.: Space Phys., 2015, vol. 120, no. 12, pp. 10 864–10 882. https://doi.org/10.1002/2015JA021509

    Article  Google Scholar 

  44. Rawer, K. and Bilitza, D., Electron density profile description in the international reference ionosphere, J. Atmos. Terr. Phys., 1989, vol. 51, nos. 9–10, pp. 781–790. https://doi.org/10.1016/0021-9169(89)90035-4

    Article  ADS  Google Scholar 

  45. Ray, S., Roy, B., Paul, K.S., Goswami, S., Oikonomou, C., Haralambous, H., and Paul, A., Study of the effect of 17–18 March 2015 geomagnetic storm on the Indian longitudes using GPS and C/NOFS, J. Geophys. Res.: Space Phys., 2017, vol. 122, no. 2, pp. 2551–2563. https://doi.org/10.1002/2016JA023127

    Article  ADS  Google Scholar 

  46. Seemala, G.K., GPS-TEC analysis application, Tech. Rep., Institute for Scientific Research, Boston College, Boston, 2011.

    Google Scholar 

  47. Series, P., Ionospheric Propagation Data and Prediction Methods Required for the Design of Satellite Services and Systems, Recommendation ITU-R P.531-13, ITU, 2016.

  48. Sivavaraprasad, G., Ratnam, D.V., Padmaja, R.S., Sharvani, V., Saiteja, G., Mounika, Y.S.R., and Harsha, P., Detection of ionospheric anomalies during intense space weather over a low-latitude GNSS station, Acta Geod. Geophys., 2017, vol. 52, no. 4, pp. 535–553. https://doi.org/10.1007/s40328-016-0190-4

    Article  ADS  Google Scholar 

  49. Thomas, E.G., Baker, J.B.H., Ruohoniemi, J.M., Coster, A.J., and Zhang, S.R., The geomagnetic storm time response of GPS total electron content in the North American sector, J. Geophys. Res.: Space Phys., 2016, vol. 121, no. 2, pp. 1744–1759. https://doi.org/10.1002/2015JA022182

    Article  ADS  Google Scholar 

  50. Timoçin, E., Inyurt, S., Temuçin, H., Ansari, K., and Jamjareegulgarn, P., Investigation of equatorial plasma bubble irregularities under different geomagnetic conditions during the equinoxes and the occurrence of plasma bubble suppression. Acta Astron., 2020, vol. 177, pp. 341–350. https://doi.org/10.1016/j.actaastro.2020.08.007

    Article  Google Scholar 

  51. Uma, G., Brahmanandam, P.S., Kakinami, Y., Dmitriev, A., Devi, N.L., Kiran, K.U., and Chu, Y. H., Ionospheric responses to two large geomagnetic storms over Japanese and Indian longitude sectors, J. Atmos. Sol.-Terr. Phys., 2012, vol. 74, pp. 94–110. https://doi.org/10.1016/j.jastp.2011.10.001

    Article  ADS  CAS  Google Scholar 

  52. Wu, C.C., Liou, K., Lepping, R.P., Hutting, L., Plunkett, S., Howard, R.A., and Socker, D., The first super geomagnetic storm of solar cycle 24: “The St. Patrick’s day event (March 17 2015)”, Earth, Planets Space, 2016, vol. 68, no. 1, pp. 1–12. https://doi.org/10.1186/s40623-016-0525-y

    Article  Google Scholar 

  53. Yakovlev, O.I., Matyugov, S.S., and Vilkov, I.A., Attenuation and scintillation of radio waves in the Earth’s atmosphere from radio occultation experiments on satellite-to-satellite links, Radio Sci., 1995, vol. 30, no. 3, pp. 1591–1602. https://doi.org/10.1029/94RS01920

    Article  Google Scholar 

  54. Zhang, S.R., Zhang, Y., Wang, W., and Verkhoglyadova, O.P., Geospace system responses to the St. Patrick’s Day storms in 2013 and 2015, J. Geophys. Res.: Space Phys., 2017, vol. 122, no. 6, pp. 6901–6906. https://doi.org/10.1002/2017JA024232

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the support of the Koneru Lakshmaiah Education Foundation Greenfields, Vaddeswaram, Guntur India and University of Alberta, Canada, Department of Physics, Edmonton, Canada.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean de Dieu Nibigira.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jean de Dieu Nibigira, Ratnam, D.V. & Sivakrishna, K. Performance Analysis of NeQuick-G, IRI-2016, IRI-Plas 2017 and AfriTEC Models over the African Region during the Geomagnetic Storm of March 2015. Geomagn. Aeron. 63 (Suppl 1), S83–S98 (2023). https://doi.org/10.1134/S0016793223600601

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600601

Keywords:

Navigation