Skip to main content
Log in

The Internal Structure of a Polarization Jet/SAID: A Stratified Polarization Jet/SAID

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of a study of the small-scale internal structure of a polarization jet/SAID (Subauroral Ion Drift) based on satellite data using the wavelet transform of ionospheric plasma parameters are presented. The minimum sizes of small-scale temperature and electron density irregularities are determined. Most likely, any polarization jet/SAID is stratified, as follows from the sample used in this work. It is shown that the wavelet transform is a convenient tool for studying the internal small-scale structure of the polarization jet/SAID, and the irregularities are better seen in the electron temperature power spectrograms than in the electron density spectrograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ahmed, M., Sagalyn, R.C., Wildman, P.J.L., and Burke, W.J., Topside ionospheric trough morphology: occurrence frequency and diurnal, seasonal and altitude variations, J. Geophys. Res., 1979, vol. 84, no. 2, pp. 489–498.

    Article  Google Scholar 

  2. Anderson, P.C., Heelis, R.A., and Hans, W.B., The ionospheric signatures of rapid subauroral ion drifts, J. Geophys. Res., 1991, vol. 96, no. A4, pp. 5785–5792. https://doi.org/10.1029/90JA02651

    Article  Google Scholar 

  3. Anderson, P.C., Hanson, W.B., Heelis, R.A., Craven, J.D., Baker, D.N., and Frank, L.A., A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution, J. Geophys. Res., 1993, vol. 98, no. A4, pp. 6069–6078. https://doi.org/10.1029/92JA01975

    Article  Google Scholar 

  4. Bondar’, E.D., Khalipov, V.L., and Stepanov, A.E., Polarization jet characteristics according to measurements at Yakutsk and Podkamennaya Tunguska subpolar stations, Soln.–Zemnaya Fiz., no. 8, pp. 143–144. 2005.

  5. Chernyshov, A.A., Mogilevsky, M.M., and Kozelov, B.V., Fractal approach to the description of the auroral region, Plasma Phys. Rep., 2013a, vol. 39, no. 7, pp. 562–571. https://doi.org/10.1134/S1063780X13060020

    Article  Google Scholar 

  6. Chernyshov, A.A., Mogilevsky, M.M., and Kozelov, B.V., Use of fractal approach to investigate ionospheric conductivity in the auroral zone, J. Geophys. Res., 2013b, vol. 118, no. 7, pp. 4108–4118. https://doi.org/10.1002/jgra.50321

    Article  Google Scholar 

  7. Chernyshov, A.A., Kozelov, B.V., and Mogilevsky, M.M., Study of auroral ionosphere using percolation theory and fractal geometry, J. Atmos. Sol-Terr. Phys., 2017, vol. 161, pp. 127–133. https://doi.org/10.1016/j.jastp.2017.06.013

    Article  Google Scholar 

  8. Chernyshov, A.A., Chugunin, D.V., Frolov, V.L., Clausen, L.B.N., Miloch, W.J., and Mogilevsky, M.M., In situ observations of ionospheric heating effects: first results from a joint SURA and NorSat-1 experiment, Geophys. Res. Lett., vol. 47, no. 13, p. e2020GL088462. https://doi.org/10.1029/2020GL088462

  9. Chugunin, D.V., Chernyshov, A.A., Moiseenko, I.L., Viktorov, M.E., and Mogilevsky, M.M., Monitoring of the electron-acceleration region with auroral kilometric radiation, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 5, pp. 538–546.

  10. De Keyser, J., Formation and evolution of subauroral ion drifts in the course of a substorm, J. Geophys. Res., 1999, vol. 104, no. A6, pp. 12 339–12 349. https://doi.org/10.1029/1999JA900109

    Article  Google Scholar 

  11. De Keyser, J., Roth, M., and Lemaire, J., The magnetospheric driver of subauroral ion drifts, Geophys. Res. Lett., 1998, vol. 25, no. 10, pp. 1625–1628. https://doi.org/10.1029/98GL01135

    Article  Google Scholar 

  12. Dremin, I.M., Ivanov, O.V., and Nechitailo, V.A., Wavelets and their uses, Phys.-Usp., 2001, vol. 44, no. 5, pp. 447–478.

    Article  Google Scholar 

  13. Farley, D.T., Two-stream plasma instability as a source of irregularities in the ionosphere, Phys. Res. Lett., 1963, vol. 10, no. 7, pp. 279–282. https://doi.org/10.1103/PhysRevLett.10.279

    Article  Google Scholar 

  14. Figueiredo, S., Karlsson, T., and Marklund, G., Investigation of subauroral ion drifts and related field-aligned currents and ionospheric Pedersen conductivity distribution, Ann. Geophys., 2004, vol. 22, no. 3, pp. 923–934. https://doi.org/10.5194/angeo-22-923-2004

    Article  Google Scholar 

  15. Foster, J.C. and Vo, H.B., Average characteristics and activity dependence of the subauroral polarization stream, J. Geophys. Res., 2002, vol. 107, no. A12, p. 1475.

    Article  Google Scholar 

  16. Galperin, Y.I., Polarization jet: characteristics and a model, Ann. Geophys., 2002, vol. 20, no. 3, pp. 391–404. https://doi.org/10.5194/angeo-20-391-2002

    Article  Google Scholar 

  17. Galperin, Y.I., Ponomarev, V.N., and Zosimova, A.G., Plasma convection in the polar ionosphere, Ann. Geophys., 1974, vol. 30, no. 1, pp. 1–7.

    Google Scholar 

  18. Golovchanskaya, I.V., Kozelov, B.V., and Despirak, I.V., Investigation of the broadband ELF turbulence by observations of the FAST satellite, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 4, pp. 474–481.

  19. Haar, A., Zur Theorie der orthogonalen Funktionensysteme, Math. Ann., 1910, vol. 69, pp. 331–371.

    Article  Google Scholar 

  20. He, F., Zhang, X., Chen, B., et al., Plasmaspheric trough evolution under different conditions of subauroral ion drift, Sci. China Technol. Sci., 2012, vol. 55, pp. 1287–1294. https://doi.org/10.1007/s11431-012-4781-1

    Article  Google Scholar 

  21. Hoang, H., Clausen, L.B.N., Roed, K., Bekkeng, T.A., Trondsen, E., Lybekk, B., and Moen, J.I., The multi-needle Langmuir probe system on board NorSat-1, Space Sci. Rev., 2018, vol. 214, no. 4, p. 75. https://doi.org/10.1007/s11214-018-0509-2

    Article  Google Scholar 

  22. Horvath, I. and Lovell, B.C., Complex sub-auroral flow channel structure formed by double-peak sub-auroral ion drifts (DSAID) and abnormal sub-auroral ion drifts (ASAID), J. Geophys. Res.: Space, 2021, vol. 126, p. e2020JA028475. https://doi.org/10.1029/2020JA028475

  23. Kadomtsev, B.B., Plasma Turbulence, London: Academic Press, 1965.

    Google Scholar 

  24. Karlsson, E., Marklund, G., Blomberg, L., and Malkki, A., Subauroral electric fields observed by Freja satellite: A statistical study, J. Geophys. Res., 1998, vol. 103, pp. 4327–4341. https://doi.org/10.1029/97JA00333

    Article  Google Scholar 

  25. Keskinen, M.J., Basu, S., and Basu, S., Midlatitude sub-auroral ionospheric small scale structure during a magnetic storm, Geophys. Res. Lett., 2004, vol. 31, no. 9, p. L09811. https://doi.org/10.1029/2003GL019368

    Article  Google Scholar 

  26. Khalipov, V.L., Stepanov, A.E., Kotova, G.A., and Bondar’, E.D., Position variations of the polarization jet and injection boundary of energetic ions during substorms, Geomagn. Aeron. (Engl. Transl.), 2016a, vol. 56, no. 2, pp. 174–180. https://doi.org/10.1134/S0016793216020080

  27. Khalipov, V.L., Stepanov, A.E., Kotova, G.A., et al., Vertical plasma drift velocities in the polarization jet observation by ground Doppler measurements and driftmeters on DMSP satellites, Geomagn. Aeron. (Engl. Transl.), 2016b, vol. 56, no. 5, pp. 535–544. https://doi.org/10.1134/S0016793216050066

  28. Lin, D., Wang, W., Scales, W.A., et al., SAPS in the 17 March 2013 storm event: Initial results from the coupled magnetosphere–ionosphere–thermosphere model, J. Geophys. Res.: Space, 2019, vol. 124, pp. 6212–6225. https://doi.org/10.1029/2019JA026698

    Article  Google Scholar 

  29. Lund, E.J., On the dissipation scale of broadband elf waves in the auroral region, J. Geophys. Res., 2010, vol. 115, p. A01201. https://doi.org/10.1029/2009JA014545

    Article  Google Scholar 

  30. Mishin, E.V. and Blaunstein, N., Irregularities within subauroral polarization stream-related troughs and GPS radio interference at midlatitudes, in Midlatitude Ionospheric Dynamics and Disturbances, Washington, DC: Am. Geophys. Union, 2008, vol. 181, pp. 291–295. https://doi.org/10.1029/181GM26.

  31. Mishin, E.V., Interaction of substorm injections with the subauroral geospace: 1. Multispacecraft observations of SAID, J. Geophys. Res.: Space, 2013, vol. 118, no. 9, pp. 5782–5796. https://doi.org/10.1002/jgra.50548

    Article  Google Scholar 

  32. Mishin, E.V., Nishimura, Y., and Foster, J., SAPS/SAID revisited: A causal relation to the substorm current wedge, J. Geophys. Res.: Space, 2017, vol. 122, no. 8, pp. 8516–8535. https://doi.org/10.1002/2017JA024263

    Article  Google Scholar 

  33. Moffett, R.J. and Quegan, S., The mid-latitude trough in the electron concentration of the ionospheric F-layer: A review of observations and modelling, J. Atmos. Terr. Phys., 1983, vol. 45, no. 5, pp. 315–343. https://doi.org/10.1016/S0021-9169(83)80038-5

    Article  Google Scholar 

  34. Muldrew, D.B., F-layer ionization troughs deduced from Alouette data, J. Geophys. Res., 1965, vol. 70, no. 11, pp. 2635–2650. https://doi.org/10.1029/JZ070i011p02635

    Article  Google Scholar 

  35. Rathod, C., Srinivasan, B., Scales, W., and Kunduri, B., Investigation of the gradient drift instability as a cause of density irregularities in subauroral polarization streams, J. Geophys. Res.: Space, 2021, vol. 126, no. 5, p. e2020JA029027. https://doi.org/10.1029/2020JA029027

  36. Rich, F.J., User’s guide for the topside ionospheric plasma monitor (SSIES, SSIES-2 and SSIES-3) on spacecraft of the defense meteorological satellite program (DMSP), Environ. Res. Pap., 1994, no. 1151, p. PL-TR-94-2187.

  37. Sinevich, A.A., Chernyshov, A.A., Chugunin, D.V., Miloch, V.Ya., and Mogilevsky, M.M., Studying the small-scale structure of a polarization jet during the April 20, 2018 geomagnetic storm, J. Sol.–Terr. Phys., 2021a, vol. 7, no. 1, pp. 17–26. https://doi.org/10.12737/stp-71202103

    Article  Google Scholar 

  38. Sinevich, A.A., Chernyshov, A.A., Chugunin, D.V., Miloch, V.Ya., and Mogilevsky, M.M., Spatial structure of polarization jet according to NorSat-1 and Swarm satellite data, Cosmic Res., 2021b, vol. 59, no. 6, pp. 463–471.

    Article  Google Scholar 

  39. Sinevich, A.A., Chernyshov, A.A., Chugunin, D.V., Oinats, A.V., Clausen, L.B.N., Miloch, W.J., et al., Small-scale irregularities within polarization jet/SAID during geomagnetic activity, Geophys. Res. Lett., 2022, vol. 49, no. 8, p. e2021GL097107. https://doi.org/10.1029/2021GL097107

  40. Sinevich, A.A., Chernyshov, A.A., Chugunin, D.V., Clausen, L.B.N., Miloch, W.J., and Mogilevsky, M.M., Stratified Subauroral Ion Drift (SSAID), J. Geophys. Res.: Space, 2023, vol. 128, no. 3, p. e2022JA031109. https://doi.org/10.1029/2022JA031109

  41. Smiddy, M., Kelley, M.C., Burke, W.J., Rich, R., Sagalyn, R., Shuman, B., Hays, R., and Lai, S., Intense poleward directed electric fields near the ionospheric projection of the plasmapause, Geophys. Rev. Lett., 1977, vol. 4, no. 11, pp. 543–546.

    Article  Google Scholar 

  42. Southwood, D. and Wolf, R., An assessment of the role of precipitation in magnetospheric convection, J. Geophys. Res., 1978, vol. 83, pp. 5227–5232. https://doi.org/10.1029/ja083ia11p05227

    Article  Google Scholar 

  43. Spiro, R.W., Heelis, R.A., and Hanson, W.B., Rapid subauroral ion drifts observed by Atmosphere Explorer C, Geophys. Res. Lett., 1979, vol. 6, no. 8, pp. 657–660. https://doi.org/10.1029/GL006i008p00657

    Article  Google Scholar 

  44. Stepanov, A.E., Khalipov, V.L., Golikov, I.A., and Bondar’, E.D., Polyarizatsionnyi dzhet: uzkie i bystrye dreify subavroral’noi ionosfernoi plazmy (Polarization Jet: Narrow Fast Drifts of the Subauroral Ionospheric Plasma), Yakutsk: SVFU, 2017.

  45. Wang, H., Lühr, H., Ritter, P., and Kervalishvili, G., Temporal and spatial effects of subauroral polarization streams on the thermospheric dynamics, J. Geophys. Res., 2012, vol. 117, no. A11. https://doi.org/10.1029/2012JA018067

  46. Watanabe, T.H., Feedback instability in the magnetosphere–ionosphere coupling system: revisited, Phys. Plasmas, 2010, vol. 17, no. 2, p. 022904. https://doi.org/10.1063/1.3304237

    Article  Google Scholar 

  47. Yu, Y., Jordanova, V.K., Zou, S., Heelis, R., Ruohoniemi, M., and Wygant, J., Modeling subauroral polarization streams during the 17 March 2013 storm, J. Geophys. Res.: Space, 2015, vol. 120, no. 3, pp. 1738–1750. https://doi.org/10.1002/2014JA020371

    Article  Google Scholar 

  48. Zheng, Y., Brandt, P.C., Lui, A.T., and Fok, M.-C., On ionospheric trough conductance and subauroral polarization streams: Simulation results, J. Geophys. Res., 2008, vol. 113, no. A4, p. A04209. https://doi.org/10.1029/2007JA012532

    Article  Google Scholar 

Download references

5. ACKNOWLEDGMENTS

NorSat-1 data are available on the website (http://tid.uio.no/plasma/norsat). DMSP mission data can be downloaded from the NOAA website (https:// s-atdat.ngdc.noaa.gov/dmsp/data/).

Funding

This work was supported by the Russian Science Foundation grant no. 23-22-00133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sinevich.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinevich, A.A., Chernyshov, A.A., Chugunin, D.V. et al. The Internal Structure of a Polarization Jet/SAID: A Stratified Polarization Jet/SAID. Geomagn. Aeron. 63, 747–756 (2023). https://doi.org/10.1134/S0016793223600583

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600583

Navigation