Skip to main content
Log in

Statistical Analysis of the Critical Frequency foF2 Dependence on Various Solar Activity Indices

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A description of the ionospheric F2-layer critical frequency foF2 dependence on solar activity by various indices (proxies) has been analyzed. The results of the vertical ionospheric sounding at the Juliusruh station during 2 winter months (January and February), 2 equinox months (March and October), and a summer month (June) are considered. Five solar proxies: Ly-α, MgII, Rz, F30, and F10.7 have been analyzed. The changes in foF2 are compared to the corresponding changes in 1957–1980. The determination coefficient R2 according to the Fisher F-test is used as a measure of the quality of the description of the foF2 dependence on SA by each of the proxies. It has been found that a well-pronounced diurnal variation in the R2 value is observed in winter months: this is higher at the near-noon hours than at night. In other words, all indices describe the foF2 behavior better in the daytime than at night. A well-pronounced diurnal variation in R2 is also observed for four proxies in the equinoctial months, whereas that variation is pronounced much less for Rz: a strong scatter of the R2 values is seen. A diurnal variation in the R2 is absent completely in June: jumps from one hour to another are observed. This analysis allows us to conclude that the most reliable SA proxies for description of the foF2 dependence on SA at all LT hours are MgII, F30, and Ly-α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Bilitza, D., International Reference Ionosphere 1990, NSSDC/WDC-A-R&S 90–22, Greenbelt, Md.: National Space Science Data Center, 1990.

    Google Scholar 

  2. Danilov, A.D., Long-term trends in the upper atmosphere and ionosphere (a review), Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 3, pp. 271–291.

  3. Danilov, A.D., Seasonal and diurnal variations in foF2 trends, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 3868–3882. https://doi.org/10.1002/2014JA020971

    Article  Google Scholar 

  4. Danilov, A.D. and Berbeneva, N.A., Trends in the critical frequency of the F2 layer during the recent decade, Geomagn. Aeron. (Engl. Transl.), 2023, vol. 63, no. 2, pp. 113–120.

  5. Danilov, A.D. and Konstantinova, A.V., Long-term variations in the parameters of the middle and upper atmosphere and ionosphere (review), Geomagn. Aeron. (Engl. Transl.), 2020a, vol. 60, no. 4, pp. 397–420.

  6. Danilov, A.D. and Konstantinova, A.V., Trends in parameters of the F2 layer and the 24th solar-activity cycle, Geomagn. Aeron. (Engl. Transl.), 2020b, vol. 60, no. 5, pp. 586–596.

  7. Danilov, A.D. and Konstantinova, A.V., Trends in foF2 and the 24th solar activity cycle, Adv. Space Res., 2020c, vol. 65, pp. 959–965. https://doi.org/10.1016/j.asr.2019.10.038

    Article  Google Scholar 

  8. Danilov, A.D. and Konstantinova, A.V., Trends in foF2 to 2022 and various solar activity indices, Adv. Space Res., 2023, vol. 71, no. 11, pp. 4594–4603.https://doi.org/10.1016/j.asr.2023.01.028

    Article  Google Scholar 

  9. De Haro Barbás, B.F. and Elias, A.G., Effect of the inclusion of solar cycle 24 in the calculation of foF2 long-term trend for two Japanese ionospheric stations, Pure Appl. Geophys., 2020, vol. 177, pp. 1071–1078.

    Article  Google Scholar 

  10. De Haro Barbás, B.F., Elias, A.G., Fagre, M., and Zossi, B.F., Incidence of solar cycle 24 in nighttime foF2 long-term trends for two Japanese ionospheric stations, Stud. Geophys. Geod., 2020, vol. 64, pp. 407–418. https://doi.org/10.1007/s11200-021-0584-9

    Article  Google Scholar 

  11. De Haro Barbás, B.F., Elias, A.G., Venchiarutti, J.V., Fagre, M.M., Zossi, B.S., Jun, G.T., and Medina, F.D., Mg II as a solar proxy to filter F2-region ionospheric parameters, Pure Appl. Geophys., 2021, vol. 178, pp. 4605–4618. https://doi.org/10.1007/s00024-021-02884-y

    Article  Google Scholar 

  12. De Haro Barbás, B.F., Zossi, B.F., Jun, G.T., Bravo, M., Ledesma, M.M., Venchiarutti, V., Gonzalez, G., Medina, F.D., Trinidad Duran, T., and Elias, A.G., Performance of the IRI-2016 and IRI-Plas 2020 considering Mg II as EUV solar proxy, Adv. Space Res., 2023. https://doi.org/10.1016/j.asr.2023.06.007

  13. Gulyaeva, T.L., Arikan, F., Sezen, U., and Poustovalova, L.V., Eight proxy indices of solar activity for the International Reference Ionosphere and Plasmasphere model, J. Atmos. Sol.-Terr. Phys., 2018, vol. 172, pp. 122–128. https://doi.org/10.1016/j.jastp.2018.03.025

    Article  Google Scholar 

  14. Laštovička, J., Is the relation between ionospheric parameters and solar proxies stable?, Geophys. Res. Lett., 2019, vol. 46, no. 24, pp. 14208–14213. https://doi.org/10.1029/2019GL085033

    Article  Google Scholar 

  15. Laštovička, J., What is the optimum solar proxy for long-term ionospheric investigations?, Adv. Space Res., 2021a, vol. 67, no. 1, pp. 2–8. https://doi.org/10.1016/j.asr.2020.07.025

    Article  Google Scholar 

  16. Laštovička, J., The best solar activity proxy for long-term ionospheric investigations, Adv. Space Res., 2021b, vol. 68, no. 6, pp. 2354–2360. https://doi.org/10.1016/j.asr.2021.06.032

    Article  Google Scholar 

  17. Laštovička, J., Long-term changes in ionospheric climate in terms of foF2, Atmosphere, 2022, vol. 13, no. 1, p. 110. https://doi.org/10.3390/atmos13010110

    Article  Google Scholar 

  18. Laštovička, J., Progress in investigating long-term trends in the mesosphere, thermosphere and ionosphere, EGUsphere, 2023. https://doi.org/10.5194/egusphere-2023-302

  19. Laštovička, J. and Burešová, D., Relationships between foF2 and various solar activity proxies, Space Weather, 2023, vol. 21, no. 4, p. e2022SW003359. https://doi.org/10.1029/2022SW003359

  20. Lean, J., Emmert, J.T., Picone, J.M., and Meier, R.R., Global and regional trends in ionospheric electron content, J. Geophys. Res., 2011, vol. 116, no. 4, p. A00H04. https://doi.org/10.1 029/2010JA016378.

    Google Scholar 

  21. Perna, L. and Pezzopane, M., foF2 vs solar indices for the Rome station: Looking for the best general relation which is able to describe the anomalous minimum between cycles 23 and 24, J. Atmos. Sol.-Terr. Phys., 2016, vol. 148, pp. 13–21. https://doi.org/10.1016/j.jastp.2016.08.003

    Article  Google Scholar 

  22. Sivakandan, M., Mielich, J., Renkwitz, T., Chau, J.L., Jaen, J., and Laštovička, J., Long-term variations and trends in the E, F and sporadic E (Es) layer over Juliusruh, Europe, J. Geophys. Res.: Space, 2022, vol. 128, p. e2022JA031097. https://doi.org/10.1029/2022JA031097.

  23. Venchiarutti, J.V., Farge, M., Zossi, B.S., Tan Juan Rios, G., and Medina, F.D, Pure. Appl. Geophys., 2021, vol. 178, pp. 4605–4618.

  24. Zhang, S.R., Cnossen, I., Laštovička, J., Elias, A.G., Yue, X., Jacobi, C., Yue, J., Wang, W., Qian, L., and Goncharenko, L., Long-term geospace climate monitoring, Front. Astron. Space Sci., 2023, vol. 10. https://doi.org/10.3389/fspas.2023.1139230

Download references

ACKNOWLEDGMENTS

The solar indices values were taken from the LISIRD site (https://lasp.colorado.edu). The authors thank A.V. Konstantinova for calculations of the foF2 monthly medians.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Danilov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Danilov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, A.D., Berbeneva, N.A. Statistical Analysis of the Critical Frequency foF2 Dependence on Various Solar Activity Indices. Geomagn. Aeron. 63, 584–594 (2023). https://doi.org/10.1134/S0016793223600480

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600480

Navigation