Skip to main content
Log in

Preflare X-ray Pulsations with Sources Outside the Main Flare Active Region

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Earlier, we showed that according to the nature of the location of sources of preflare X-ray pulsations relative to the main solar flare, events are divided into at least two types: in type I events, the sources of pulsations and the main flare are in the same active region (AR) and in type II events they are in different regions. This paper presents an analysis of a type II event in which, according to data from the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) space observatory, X-ray sources of preflare quasi-periodic pulsations (with a period P = 1.5 ± 0.1 min), which began at ~1802 UT, were located in AR 11 884 in the Western Hemisphere, and the sources of the main flare M1.0 SOL2013-11-05T18:08 were located in AR 11 890 in the Eastern Hemisphere. The pulsations were also observed with the Gamma-Ray Burst Monitor (GBM) aboard the Fermi space observatory and the X-Ray Sensor (XRS) aboard the Geostationary Operational Environmental Satellite (GOES), excluding the possibility of their artificial origin. According to the data of the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) in the extreme ultraviolet range, it was found that the sources of pulsations were located at the base of coronal jets that flowed out at velocities of ~100–1500 km/s. The distance between AR 11 884 and AR 11 890 was ~1.4 RS. It would take ~17–250 min for the jet plasma to reach AR 11 890, which is much longer than the time interval between the onset of pulsations (jets) and the flare (~6 min). No loops connecting AR 11 884 and AR 11 890 were observed in the corona. Moreover, no connection of these regions by magnetic field lines extrapolated from the photosphere to the corona in the potential approximation was found. These arguments indicate that the jets (and associated pulsations) could not be the trigger for the flare. Thus, a vivid example of an event is presented in which there was no physical connection between preflare X-ray pulsations (and jets) and the flare that followed them. This event demonstrates the importance of spatially resolved observations in the study of pulsations on the Sun and stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Abramov-Maximov, V.E. and Bakunina, I.A., Solar-flare precursors in the microwave range, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 7, pp. 846–852. https://doi.org/10.1134/S0016793220070038

  2. Abramov-Maximov, V.E. and Bakunina, I.A., Signs of preparation of solar flares in the microwave range, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 62, no. 7, pp. 895–902. https://doi.org/10.1134/S0016793222070040

  3. Durasova, M.S., Kobrin, M.M., and Yudin, O.I., Evidence of quasi-periodic movements in the solar chromosphere and corona, Nat. Phys. Sci., 1971, vol. 229, no. 3, pp. 82–84. https://doi.org/10.1038/physci229082b0

    Article  Google Scholar 

  4. Hudson, H.S., Simoes, P.J.A., Fletcher, L., Hayes, L.A., and Hannah, I.G., Hot X-ray onsets of solar flares, Mon. Not. R. Astron. Soc., 2021, vol. 501, no. 1, pp. 1273–1281. https://doi.org/10.1093/mnras/staa3664

    Article  Google Scholar 

  5. Hurford, G.J., Schmahl, E.J., Schwartz, R.A., et al., The RHESSI imaging concept, Sol. Phys., 2002, vol. 210, pp. 61–86. https://doi.org/10.1023/A:1022436213688

    Article  Google Scholar 

  6. Inglis, A.R., Zimovets, I.V., Dennis, B.R., Kontar, E.P., Nakariakov, V.M., Struminsky, A.B., and Tolbert, A.K., Instrumental oscillations in RHESSI count rates during solar flares, Astron. Astrophys., 2011, vol. 530, p. A47. https://doi.org/10.1051/0004-6361/201016322

    Article  Google Scholar 

  7. Kaltman, T.I., Stupishin, A.G., Anfinogentov, S.A., Nakariakov, V.M., Loukitcheva, M.A., and Shendrik, A.V., Hot jets in the Solar corona: Creating a catalogue of events based on multi-instrumental observations, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 7, pp. 1083–1091. https://doi.org/10.1134/S0016793221070070

  8. Kobrin, M.M., Korshunov, A.I., Snegirev, S.D., and Timofeev, B.V., On a sharp increase of quasi-periodic components of fluctuations of inclination of the spectrum of solar radio emission at lambda = 3 cm before active events in August 1972, Soln. Dannye, 1973, vol. 10, pp. 79–85.

    Google Scholar 

  9. Kupriyanova, E.G., Melnikov, V.F., Nakariakov, V.M., and Shibasaki, K., Types of microwave quasi-periodic pulsations in single flaring loops, Sol. Phys., 2010, vol. 267, no. 2, pp. 329–342. https://doi.org/10.1007/s11207-010-9642-0

    Article  Google Scholar 

  10. Kupriyanova, E.G., Kolotkov, D.Yu., Nakaryakov, V.M., and Kaufman, A.S., Quasi-periodic pulsations in solar and stellar flares. Review, J. Sol.-Terr. Phys., 2020, vol. 6, no. 1, pp. 3–23. https://doi.org/10.12737/stp-61202001

    Article  Google Scholar 

  11. Lemen, J.R., Title, A.M., Akin, D.J., et al., The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, pp. 17–40. https://doi.org/10.1007/s11207-011-9776-8

    Article  Google Scholar 

  12. Li, D., Shi, F., Zhao, H., Xiong, S., Song, L., Peng, W., Li, X., Chen, W., and Ning, Z., Flare quasi-periodic pulsation associated with recurrent jets, Front. Astron. Space Sci., 2022, vol. 9, p. 1032099. https://doi.org/10.3389/fspas.2022.1032099

    Article  Google Scholar 

  13. Lin, R.P., Dennis, B.R., Hurford, G.J., et al., The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), Sol. Phys., 2002, vol. 210, pp. 3–32. https://doi.org/10.1023/A:1022428818870

    Article  Google Scholar 

  14. McLaughlin, J.A., Nakariakov, V.M., Dominique, M., Jelinek, P., and Takasao, S., Modelling quasi-periodic pulsations in solar and stellar flares, Space Sci. Rev., 2018, vol. 214, no. 1, p. 45. https://doi.org/10.1007/s11214-018-0478-5

    Article  Google Scholar 

  15. Meegan, C., Lichti, G., Bhat, P.N., et al., The Fermi Gamma-ray Burst Monitor, Astrophys. J., 2009, vol. 702, no. 1, pp. 791–804. https://doi.org/10.1088/0004-637X/702/1/791

    Article  Google Scholar 

  16. Mishra, S.K., Sangal, K., Kayshap, P., Jelinek, P., Srivastava, A.K., and Pajaguru, S.P., Origin of quasi-periodic pulsation at the base of kink unstable jet, Astrophys. J., 2023, vol. 945, no. 2, p. 113. https://doi.org/10.3847/1538-4357/acb058

    Article  Google Scholar 

  17. Nakariakov, V.M., Kosak, M.K., Kolotkov, D.Y., Anfinogentov, S.A., Kumar, P., and Moon, Y.-J., Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations, Astrophys. J. Lett., 2019, vol. 874, no. 1, p. L1. https://doi.org/10.3847/2041-8213/ab0c9f

    Article  Google Scholar 

  18. Nakariakov, V.M., Anfinogentov, S.A., Antolin, P., et al., Kink oscillations of coronal loops, Space Sci. Rev., 2021, vol. 217, no. 6, p. 73. https://doi.org/10.1007/s11214-021-00847-2

    Article  Google Scholar 

  19. Scherrer, P.H., Schou, J., Bush, R.I., et al., The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, nos. 1–2, pp. 207–227. https://doi.org/10.1007/s11207-011-9834-2

    Article  Google Scholar 

  20. Schrijver, C.J. and DeRosa, M.L., Photospheric and heliospheric magnetic fields, Sol. Phys., 2003, vol. 212, no. 1, pp. 165–200. https://doi.org/10.1023/A:1022908504100

    Article  Google Scholar 

  21. Srivastava, A.K., Mishra, S.K., Jelinek, P., et al., On the observations of rapid forced reconnection in the solar corona, Astrophys. J., 2019, vol. 887, no. 2, p. 137. https://doi.org/10.3847/1538-4357/ab4a0c

    Article  Google Scholar 

  22. Stupishin, A., SlitTreat: Slit analyzing tool, 2022. https://doi.org/10.5281/zenodo.7362757

  23. Stupishin, A.G., Anfinogentov, S.A., and Kaltman, T.I., Diagnostics of parameters of hot jets in the solar corona in time series of images, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 8, pp. 1108–1115. https://doi.org/10.1134/S0016793221080181

  24. Stupishin, A., Anfinogentov, S., and Kaltman, T., JeAn—Jet Analyzer software package, 2022. https://doi.org/10.5281/zenodo.7362689

  25. Tan, B., Yu, Z., Huang, J., Tan, C., and Zhang, Y., Very long-period pulsations before the onset of solar flares, Astrophys. J., 2016, vol. 833, p. 206. https://doi.org/10.3847/1538-4357/833/2/206

    Article  Google Scholar 

  26. Torrence, C. and Compo, G.P., A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 1998, vol. 79, no. 1, pp. 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

    Article  Google Scholar 

  27. Ugai, M., Physical mechanism of reconnection onset in space plasmas, 2019. https://doi.org/10.48550/arXiv.1902.01588

  28. Van Doorsselaere, T., Kupriyanova, E.G., and Yuan, D., Quasi-periodic pulsations in solar and stellar flares: An overview of recent results (invited review), Sol. Phys., 2016, vol. 291, pp. 3143–3164. https://doi.org/10.1007/s11207-016-0977-z

    Article  Google Scholar 

  29. White, S.M., Thomas, R.J., and Schwartz, R.A., Updated expressions for determining temperatures and emission measures from GOES soft X-ray measurements, Sol. Phys., 2005, vol. 227, pp. 231–248. https://doi.org/10.1007/s11207-005-2445-z

    Article  Google Scholar 

  30. Zhdanov, A.A. and Charikov, Yu.E., Power-spectrum analysis of preflare solar X-rays, Sov. Astron. Lett., 1985, vol. 11, no. 2, pp. 88–90.

    Google Scholar 

  31. Zimovets, I.V. and Struminsky, A.B., Observations of double-periodic X-ray emission in interacting systems of solar flare loops, Sol. Phys., 2010, vol. 263, nos. 1–2, pp. 163–174. https://doi.org/10.1007/s11207-010-9518-3

    Article  Google Scholar 

  32. Zimovets, I.V., McLaughlin, J.A., Srivastava, A.K., et al., Quasi-periodic pulsations in solar and stellar flares: A review of underpinning physical mechanisms and their predicted observational signatures, Space Sci. Rev., 2021, vol. 217, no. 5, p. 66. https://doi.org/10.1007/s11214-021-00840-9

    Article  Google Scholar 

  33. Zimovets, I.V., Nechaeva, A.B., Sharykin, I.N., and Nizamov, B.A., Sources of long-period X-ray pulsations before the onset of solar flares, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 62, no. 4, pp. 356–374. https://doi.org/10.1134/S0016793222040181

Download references

6. ACKNOWLEDGMENTS

We are grateful to the RHESSI, SDO/AIA, SDO/HMI, GOES/XRS, and Fermi/GBM instrument teams for free access to the data, without which this work could not be carried out at present. The wavelet analysis software is provided by C. Torrence and G. Compo and is available at URL: (http://atoc.colorado.edu/research/wavelets/) and (https:// github.com/chris-torrence/wavelets). We thank the reviewers for useful comments.

Funding

The work of I.V. Zimovets, I.N. Sharykin and B.A. Nizamov (everything, except for the identification of coronal jets and estimation of their velocities) was supported by a grant from the Russian Science Foundation (project no. 20-72-10 158).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Zimovets, I. N. Sharykin, T. I. Kaltman, A. G. Stupishin or B. A. Nizamov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimovets, I.V., Sharykin, I.N., Kaltman, T.I. et al. Preflare X-ray Pulsations with Sources Outside the Main Flare Active Region. Geomagn. Aeron. 63, 513–526 (2023). https://doi.org/10.1134/S0016793223600455

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600455

Navigation