Skip to main content
Log in

Statistical Studies of Auroral Activity and Perturbations of the Geomagnetic Field at Middle Latitudes

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

In this paper, we statistically analyzed substorm activity at auroral latitudes for 2007–2020 and its relationship with magnetic disturbances at middle latitudes using the INTERMAGNET, SuperMAG, and IMAGE magnetometer data. The appearance and development of magnetic disturbances at auroral latitudes was monitored by the IL index (similar to the AL index, but calculated according to IMAGE data). For the 2007–2020 period, events that were observed near the meridian of the IMAGE network, in the night sector (2103 MLT), were selected. Two samples of events were used: (1) IL < –200 nT for at least 10 min, with an additional criterion for the presence or absence of positive bays at the Panagyurishte station in Bulgaria, and (2) isolated substorms observed on the IMAGE meridian according to the list of Ohtani and Gjerloev (2020). The distributions of the IL index, as well as the empirical and theoretical cumulative distribution functions, are obtained, and the of the occurrence of extreme events are also estimated. It is shown that, in general, the IL distributions are described well by exponential functions, and out of all events, events accompanied by mid-latitude positive bays were observed in ~65% of cases while their fraction increased with increasing disturbance intensity. Events with positive bays at midlatitudes of MPB and isolated substorms were better described by the Weibull distribution for extreme events. From both distributions, annual and semi-annual variations were identified: annual variations have a summer minimum and a winter maximum, and semi-annual variations have maxima near the equinoxes, which is most likely due to the Russell-McPherron effect. The semi-annual variation is also shown to be more pronounced for events with accompanying mid-latitudinal positive bays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Akasofu, S.-I. and Meng, C.I., A study of polar magnetic substorms, J. Geophys. Res., 1969, vol. 74, no. 1, pp. 293–313. https://doi.org/10.1029/JA074i001p00293

    Article  Google Scholar 

  2. Bartels, J., Terrestrial-magnetic activity and its relation to solar phenomena, Terr. Magn. Atmos. Electr., 1932, vol. 37, no. 1, pp. 1–52. https://doi.org/10.1029/TE037i001p00001

    Article  Google Scholar 

  3. Berthelier, A., Influence of the polarity of the interplanetary magnetic field on the annual and the diurnal variations of magnetic activity, J. Geophys. Res.: Space Phys., 1976, vol. 81, no. 25, pp. 4546–4552. https://doi.org/10.1029/JA081i025p04546

    Article  Google Scholar 

  4. Boller, B.R. and Stolov, H.L., Kelvin Helmholtz instability and the semiannual variation of geomagnetic activity, J. Geophys. Res., 1970, vol. 75, no. 31, pp. 6073–6084. https://doi.org/10.1029/JA075i031p06073

    Article  Google Scholar 

  5. Bojilova, R., Automated Geophysical Data Collection System: Appendix XLV, in Sbornik na “Natsionalna konferentsiya po v"prosi na obuchenie po fizika” (Proceedings of the National Conference on Issues of Physics Learning), Sofia, 2017, pp. 55–59.

  6. Broun, J.A., Observations in magnetism and meteorology made at Makerstoun in Scotland, in 1844. The Aurora Borealis, Trans. R. Soc. Edinburgh, 1848, vol. 18, pp. 401–402. https://doi.org/10.1017/S0080456800039077

    Article  Google Scholar 

  7. Chu, X., Configuration and generation of substorm current wedge, PhD (Geophysics and Space Physics) Dissertation, Los Angeles: University of California, 2015.

  8. Cliver, E.W., Kamide, Y., and Ling, A.G. Mountains versus valleys: Semiannual variation of geomagnetic activity, J. Geophys. Res., 2000, vol. 105, no. A2, pp. 2413–2424. https://doi.org/10.1029/1999JA900439

  9. Coles, S., An Introduction to Statistical Modeling of Extreme Values, London: Springer, 2001.

    Book  Google Scholar 

  10. Cortie, A.L., Sun-spots and terrestrial magnetic phenomena, 1898–1911: The cause of the annual variation in magnetic disturbances, Mon. Not. R. Astron. Soc., 1912, vol. 73, no. 1, pp. 52–60. https://doi.org/10.1093/mnras/73.1.52

    Article  Google Scholar 

  11. Davis, T.N. and Sugiura, M., Auroral electrojet activity index AE and its universal time variations, J. Geophys. Res., 1966, vol. 71, no. 3, pp. 785–801. https://doi.org/10.1029/JZ071i003p00785

    Article  Google Scholar 

  12. Despirak, I.V., Lyubchich, A.A., and Kleimenova, N.G., Polar and high latitude substorms and solar wind conditions, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 5, pp. 575–582. https://doi.org/10.1134/S0016793214050041

  13. Despirak, I.V., Kleimenova, N.G., Gromova, L.I., Gromov, S.V., and Malysheva, L.M., Supersubstorms during storms of September 7–8, 2017, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 3, pp. 292–300. https://doi.org/10.1134/S0016793220030044.

  14. Despirak, I.V., Setsko, P.V., Sakharov, Ya.A., Lyubchich, A.A., Selivanov, V.N., and Valev, D., Observations of geomagnetic induced currents in northwestern Russia: Case studies, Geomagn. Aeron. (Engl. Transl.), 2022a, vol. 62, no. 6, pp. 711–723. https://doi.org/10.1134/S0016793222060032

  15. Despirak, I.V., Kleimenova, N.G., Lubchich, A.A., Malysheva, L.M., Gromova, L.I., Roldugin, A.V., and Kozelov, B.V., Magnetic substorms and auroras at the polar latitudes of Spitsbergen: Events of December 17, 2012, Bull. Russ. Acad. Sci.: Phys., 2022b, vol. 86, no. 3, pp. 266–274. https://doi.org/10.3103/S1062873822030091

    Article  Google Scholar 

  16. Echer, E., Gonzalez, W.D., and Tsurutani, B.T., Statistical studies of geomagnetic storms with peak Dst ≤ –50 nT from 1957 to 2008, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, nos. 11–12, pp. 1454–1459. https://doi.org/10.1016/j.jastp.2011.04.021

    Article  Google Scholar 

  17. Fu, H., Yue, C., Zong, Q.-G., Zhou, X.-Z., and Fu, S., Statistical characteristics of substorms with different intensity, J. Geophys. Res.: Space Phys., 2021, vol. 126, no. 8, e2021JA029318. https://doi.org/10.1029/2021JA029318

  18. Gjerloev, J.W., A global ground-based magnetometer initiative, Eos Trans. Am. Geophys. Union, 2009, vol. 90, pp. 230–231. https://doi.org/10.1029/2009EO270002

    Article  Google Scholar 

  19. Gjerloev, J.W., The SuperMAG data processing technique, J. Geophys. Res., 2012, vol. 117, A09213. https://doi.org/10.1029/2012JA017683

    Article  Google Scholar 

  20. Gopalswamy, N., Chapter 2—extreme solar eruptions and their space weather consequences, in Extreme Events in Geospace (Origins, Predictability, and Consequences), Buzulukova, N., Ed., Elsevier, 2018, pp. 37–63. https://doi.org/10.1016/B978-0-12-812700-1.00002-9.

  21. Grubbs, F.E. and Beck, G., Extension of sample sizes and percentage points for significance tests of outlying observations, Technometrics, 1972, vol. 14, no. 4, pp. 847–854. https://doi.org/10.2307/1267134

    Article  Google Scholar 

  22. Guo, J., Feng, X., Pulkkinen, T.I., Tanskanen, E.I., Xu, W., Lei, J., and Emery, B.A., Auroral electrojets variations caused by recurrent high-speed solar wind streams during the extreme solar minimum of 2008, J. Geophys. Res., 2012, vol. 117, no. A4, p. A04307. https://doi.org/10.1029/2011JA017458

    Article  Google Scholar 

  23. Guo, J., Liu, H., Feng, X., Pulkkinen, T.I., Tanskanen, E.L., Liu, C., Zhong, D., and Wang, Z., MLT and seasonal dependence of auroral electrojets: IMAGE magnetometer network observations, J. Geophys. Res.: Space Phys., 2014, vol. 119, no. 4, pp. 3179–3188. https://doi.org/10.1002/2014JA019843

    Article  Google Scholar 

  24. Iijima, T. and Potemra, T.A. Large-scale characteristics of field aligned currents associated with substorms, J. Geophys. Res., 1978, vol. 83, no. 2, pp. 599–615. https://doi.org/10.1029/JA083iA02p00599

  25. Kamide, Y. and Akasofu, S.-I. The auroral electrojet and global auroral features, J. Geophys. Res., 1975, vol. 80, no. 25, pp. 3585–3602.https://doi.org/10.1029/JA080i025p03585

  26. Kepko, L., McPherron, R.L., Amm, O., Apatenkov, S., Baumjohann, W., Birn, J., Lester, M., Nakamura, R., Pulkkinen, T.I., and Sergeev, V., Substorm current wedge revisite, Space Sci. Rev., 2015, vol. 190, pp. 1–46. https://doi.org/10.1007/s11214-014-0124-9

    Article  Google Scholar 

  27. Lockwood, M., Owens, M.J., Barnard, L.A., Haines, C., Scott, C.J., McWilliams, K.A., and Coxon, J.C., Semi-annual, annual and universal time variations in the magnetosphere and in geomagnetic activity: 1. Geomagnetic data, J. Space Weather Space Clim., 2020, vol. 10, p. 23. https://doi.org/10.1051/swsc/2020023

    Article  Google Scholar 

  28. Love, J.J., Rigler, E.J., Pulkkinen, A., and Riley, P., On the lognormality of historical magnetic storm intensity statistics: Implications for extreme-event probabilities, Geophys. Res. Lett., 2015, vol. 42, no. 16, pp. 6544–6553. https://doi.org/10.1002/2015GL064842

    Article  Google Scholar 

  29. Lyatsky, W. and Tan, A. Latitudinal effect in semiannual variation of geomagnetic activity, J. Geophys. Res., 2003, vol. 108, no. A5, p. 1204.https://doi.org/10.1029/2002JA009467

  30. Matzka, J., Stolle, C., Yamazaki, Y., Bronkalla, O., and Morschhauser, A., The geomagnetic Kp index and derived indices of geomagnetic activity, Space Weather, 2021, vol. 19, no. 5, e2020SW002641. https://doi.org/10.1029/2020SW002641

  31. McIntosh, D.H., On the annual variation of magnetic disturbances, Philos. Trans. R. Soc., A, 1959, vol. 251, no. 1001, pp. 525–552. https://doi.org/10.1098/rsta.1959.0010

  32. McPherron, R.L., Growth phase of magnetospheric substorms, J. Geophys. Res., 1970, vol. 75, no. 28, pp. 5592–5599. https://doi.org/10.1029/JA075i028p05592

    Article  Google Scholar 

  33. McPherron, R.L., The use of ground magnetograms to time the onset of magnetospheric substorms, J. Geomagn. Geoelectr., 1978, vol. 30, no. 3, pp. 149–163. https://doi.org/10.5636/jgg.30.149

    Article  Google Scholar 

  34. McPherron, R.L. and Chu, X., The mid-latitude positive bay and the MPB index of substorm activity, J. Geophys. Res., 2017, vol. 206, pp. 91–122. https://doi.org/10.1007/s11214-016-0316-6

    Article  Google Scholar 

  35. McPherron, L.R. and Chu, X., The midlatitude positive bay index and the statistics of substorm occurrence, J. Geophys. Res.: Space Phys., 2018, vol. 123, no. 4, pp. 2831–2850. https://doi.org/10.1002/2017JA024766

    Article  Google Scholar 

  36. McPherron, R.L., Russell, C.T., and Aubry, M.P., Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms, J. Geophys. Res., 1973, vol. 78, no. 16, pp. 3131–3149. https://doi.org/10.1029/ja078i016p03131.

  37. Mikhailov, A.V., Depuev, V.Kh., and Leschinskaya, T.Yu., Geomagnetic activity threshold for F2-layer negative storms onset: Seasonal dependence, Int. J. Geomagn. Aeron., 2005, vol. 6, no. 1. https://doi.org/10.1029/2005GI000098

  38. Murayama, T., Origin of the semiannual variation of geomagnetic Kp indices, J. Geophys. Res.: Space Phys., 1974, vol. 79, no. 1, pp. 297–300. https://doi.org/10.1029/JA079i001p00297

    Article  Google Scholar 

  39. Mursula, K., Tanskanen, E., and Love, J., Spring–fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry, Geophys. Res. Lett., 2011, vol. 38, no. 6, p. L06104. https://doi.org/10.1029/2011GL046751

    Article  Google Scholar 

  40. Nakamura, M., Yoneda, A., Oda, M., and Tsubouchi, K., Statistical analysis of extreme auroral electrojet indices, Earth, Planets Space, 2015, vol. 67, p. 153. https://doi.org/10.1186/s40623-015-0321-0

    Article  Google Scholar 

  41. Newell, P.T. and Gjerloev, J.W., Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power, J. Geophys. Res., 2011a, vol. 116, no. A12, p. A12211. https://doi.org/10.1029/2011JA016779

    Article  Google Scholar 

  42. Newell, P.T. and Gjerloev, J.W., Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices, J. Geophys. Res., 2011b, vol. 116, no. A12, p. A12232. https://doi.org/10.1029/2011JA016936

    Article  Google Scholar 

  43. Nusinov, A.A., Rudneva, N.M., Ginzburg, E.A., and Dremukhina, L.A., Seasonal variations in statistical distributions of geomagnetic activity indices, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 4, pp. 493–498. https://doi.org/10.1134/S0016793215040106

  44. O’Brien, P. and McPherron, R.L., Seasonal and diurnal variation of Dst dynamics, J. Geophys. Res., 2002, vol. 107, no. A11, p. 1341. https://doi.org/10.1029/2002JA009435

    Article  Google Scholar 

  45. Ohtani, S. and Gjerloev, J.W., Is the substorm current wedge an ensemble of wedgelets?: Revisit to midlatitude positive bays, J. Geophys. Res.: Space Phys., 2020, vol. 125, no. 9, e2020JA027902. https://doi.org/10.1029/2020JA027902

  46. Rangarajan, G.K. and Iyemori, T., Time variations of geomagnetic activity indices Kp and Ap: An update, Ann. Geophys., 1997, vol. 15, no. 10, pp. 1271–1290. https://doi.org/10.1007/s00585-997-1271-z

    Article  Google Scholar 

  47. Riley, P., On the probability of occurrence of extreme space weather events, Space Weather, 2012, vol. 10, no. 2, p. S02012. https://doi.org/10.1029/2011SW000734

    Article  Google Scholar 

  48. Russell, C.T. and McPherron, R.L., Semiannual variation of geomagnetic activity, J. Geophys. Res., 1973, vol. 78, no. A1, pp. 92–108. https://doi.org/10.1029/JA078i001p00092

    Article  Google Scholar 

  49. Sabine, E., On periodical laws discoverable in the mean effects of the larger magnetic disturbances—No. II, Philos. Trans. R. Soc. London, 1852, vol. 142, pp. 103–124. https://doi.org/10.1098/rstl.1852.0009

    Article  Google Scholar 

  50. Sergeev, V.A., Angelopoulos, V., Kubyshkina, M., Donovan, E., Zhou, X.-Z., Runov, A., Singer, H., McFadden, J., and Nakamura, R., Substorm growth and expansion onset as observed with ideal ground-spacecraft themis coverage, J. Geophys. Res., 2011, vol. 116, p. A00I2. https://doi.org/10.1029/2010JA015689

  51. Singh, A.K., Rawat, R., and Pathan, B.M., On the ut and seasonal variations of the standard and SuperMAG auroral electrojet indices, J. Geophys. Res.: Space Phys., 2013, vol. 118, no. 8, pp. 5059–5067. https://doi.org/10.1002/jgra.50488

    Article  Google Scholar 

  52. Svalgaard, L., Cliver, E.W., and Ling, A.G., The semiannual variation of great geomagnetic storms, Geophys. Res. Lett., 2002, vol. 29, no. 16, pp. 12-1–12-4. https://doi.org/10.1029/2001GL014145

  53. Tanskanen, E.I., A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined, J. Geophys. Res., 2009, vol. 114, no. A5, p. A05204. https://doi.org/10.1029/2008JA013682

    Article  Google Scholar 

  54. Thomson, A.W.P., Dawson, E.B., and Reay, S.J., Quantifying extreme behavior in geomagnetic activity, Space Weather, 2011, vol. 9, no. 10, p. S10001. https://doi.org/10.1029/2011SW000696

    Article  Google Scholar 

  55. Tsubouchi, K. and Omura, Y., Long-term occurrence probabilities of intense geomagnetic storm events, Space Weather, 2007, vol. 5, no. 12, p. S12003. https://doi.org/10.1029/2007SW000329

    Article  Google Scholar 

  56. Tsurutani, B.T. and Hajra, R., The interplanetary and magnetospheric causes of geomagnetically inducted currents (GICs) > 10A in the Mäntsälä Finland Pipeline: 1999 through 2019, J. Space Weather Clim., 2021, vol. 11, p. A23. https://doi.org/10.1051/swsc/2021001

    Article  Google Scholar 

  57. Viljanen, A., Tanskanen, E.I., and Pulkkinen, A., Relation between substorm characteristics and rapid temporal variations of the ground magnetic field, Ann. Geophys., 2006, vol. 24, no. 2, pp. 725–733. https://doi.org/10.5194/angeo-24-725-2006

    Article  Google Scholar 

  58. Vorobev, A.V., Pilipenko, V.A., Sakharov, Ya.A., and Selivanov, V.N., Statistical relationships between variations of the geomagnetic field, auroral electrojet, and geomagnetically induced currents, J. Sol.-Terr. Phys., 2019, vol. 5, no. 1, pp. 35–42. https://doi.org/10.12737/stp-51201905

    Article  Google Scholar 

  59. Weibull, W., A statistical distribution function of wide applicability, J. Appl. Mech.-Trans. ASME, 1951, vol. 18, no. 3, pp. 293–297.

    Article  Google Scholar 

  60. Werner, R., Guineva, V., Atanassov, A., Bojilova, R., Raykova, L., Valev, D., Lubchich, A., and Despirak, I., Calculation of the horizontal power perturbations of the Earth surface magnetic field, in Proceedings of the Thirteenth Workshop “Solar Influences on the Magnetosphere, Ionosphere and Atmosphere”, Primorsko, Bulgaria, 2021, pp. 159–164. https://doi.org/10.31401/WS.2021.proc.

  61. Yanovskii, B.M., Zemnoi magnetism (Terrestrial Magnetism), Leningrad: LGU, 1978.

  62. Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S., and Yermolaev, M.Y., Occurrence rate of extreme magnetic storms, J. Geophys. Res.: Space Phys., 2013, vol. 118, no. 8, pp. 4760–4765. https://doi.org/10.1002/jgra.50467

    Article  Google Scholar 

  63. Yoshida, A., Physical meaning of the equinoctial effect for semi-annual variation in geomagnetic activity, Ann. Geophys., 2009, vol. 27, pp. 1909–1914. https://doi.org/10.5194/angeo-27-1909-2009

    Article  Google Scholar 

Download references

7. ACKNOWLEDGMENTS

The authors are grateful to the creators of the database IMAGE (http://space.fmi.fi/image/), SuperMAG (http:// supermag.jhuapl.edu/), INTERMAGNET (https://intermagnet.github.io/) for possibility of their use in the study. We are also grateful for the opportunity to use the list of isolated substorms obtained by the Ohtani and Gjerloev method (Ohtani and Gjerloev, 2020), the SMU and SML indices (Newell and Gjerloev, 2011b) and collaboration with SuperMAG (Gjerloev, 2012). We express our gratitude to the Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences and the team of employees who provide support for the operation of the instruments at the Panagyurishte observatory (Bulgaria) and for the opportunity to use data from the Panagyurishte observatory.

Funding

The work of Werner R., Guineva V., Atanasov A., Bojilova R., Raikova L., and Valev D. was supported the National Science Foundation of Bulgaria, project no. KP-06-Rusiya/15. The work of Despirak I.V., Lyubchich A.A., and Setsko P.V. was supported by the Russian Foundation for Basic Research and the National Science Foundation of Bulgaria, project no. 20-55-18 003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Despirak.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werner, R., Guineva, V., Despirak, I.V. et al. Statistical Studies of Auroral Activity and Perturbations of the Geomagnetic Field at Middle Latitudes. Geomagn. Aeron. 63, 473–485 (2023). https://doi.org/10.1134/S0016793223600303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600303

Navigation