Skip to main content
Log in

Preseismic Ionospheric Electric Field Irregularities Detected by the Double Probes Method

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Based on the double probe method, we investigated the ionospheric preseismic electric effects for the strong Chile earthquake of magnitude M = 8.8 that occurred on February 27, 2010, at 06:3414 universal time (UT). To correlate the electrical disturbance to natural geophysical activities in the ionosphere associated with the earthquake, we used a new approach to analyze these disturbances a few days before the event, based on DEMETER spacecraft collected data in the ultra low frequency (ULF) band. The double probes method and the calculated preseismic ionospheric electric field resulting from the potential difference between two electrical probes of ICE (Instrument Champ Electrique) onboard the DEMETER satellite are investigated. Once the effect of the satellite motion is canceled, it is found that the disturbance is caused only by the telluric activity. Moreover, the investigation of the collected data illustrates a clear correlation between preseismic electrical disturbances and ionospheric plasma parameters recorded near the future epicenter. The strongest ionospheric electrical disturbances are located near the future epicenter and close to the geomagnetic conjugate points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Aburjania, G.D., Kharshiladze, O.A., and Chargazia, K.Z., Self-organization of IGW structures in an inhomogeneous ionosphere: 2. Nonlinear vortex structures, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, pp. 750–760. https://doi.org/10.1134/S0016793213060029

  2. Akhoondzadeh, M., Novelty detection in time series of ULF magnetic and electric components obtained from DEMETER satellite experiments above Samoa (29 September 2009) earthquake region, Nat. Hazards Earth Syst. Sci., 2013, vol. 13, no. 1, pp. 15–25. https://doi.org/10.5194/nhess-13-15-2013

    Article  ADS  Google Scholar 

  3. Athanasiou, M.A., Anagnostopoulos, G.C., Iliopoulos, A.C., Pavlos, G.P., and David, C.N., Enhanced ULF radiation observed by DEMETER two months around the strong 2010 Haiti earthquake, Nat. Hazards Earth Syst. Sci., 2011, vol. 11, pp. 1091–1098. https://doi.org/10.5194/nhess-11-1091-2011

    Article  ADS  Google Scholar 

  4. Bertello, I., Piersanti, M., Candidi, M., and Diego, P., and Ubertini, P, 2018, Electromagnetic field observations by the DEMETER satellite in connection with the 2009 L’Aquila earthquake, Ann. Geophys., 2018, vol. 36, pp. 1483–1493. https://doi.org/10.5194/angeo-36-1483-2018

    Article  ADS  Google Scholar 

  5. Berthelier, J., Godefroy, M., Leblanc, F., et al., ICE, The electric field experiment on DEMETER, Planet. Space Sci., 2006, vol. 54, pp. 456–471. https://doi.org/10.1016/j.pss.2005.10.016

    Article  ADS  Google Scholar 

  6. Bonnell, J.W., In-flight instabilities of double probe electric field instruments: A survey of observations and analyses and proposed laboratory investigations, in Proceedings of the 21st International Conference on Electromagnetics in Advanced Applications (ICEAA), IEEE, 2019, p. 857. https://doi.org/10.1109/ICEAA.2019.8878954

  7. Cerisier, J.C., Berthelier, J.J., and Beghin, C., Unstable density gradients in the high latitude ionosphere, Radio Sci., 1985, vol. 20, pp. 755–761. https://doi.org/10.1029/RS020i004p00755

    Article  ADS  Google Scholar 

  8. Chen, X.-X., Ren, R., Yang, J., Fang, D.-M., and Xia, S-H., Double-probe space borne electric field sensor for earthquake precursor detection in ionosphere, Proc. SPIE: Int. Soc. Opt. Eng., 2011, vol. 8196. https://doi.org/10.1117/12.899582

  9. Fahleson, U., Theory of electric field measurements conducted in the magnetosphere with electric probes, Space Sci. Rev., 1967, vol. 7, pp. 238–262. https://doi.org/10.1007/BF00215600

    Article  ADS  Google Scholar 

  10. Fahleson, U., Fãlthammar, C.-G., and Pedersen, A., Ionospheric temperature and density measurements by means of spherical double probes, Planet. Space Sci., 1974, vol. 22, pp. 41–66. https://doi.org/10.1016/0032-0633(74)90122-6

    Article  ADS  Google Scholar 

  11. Hartley, D.P., Christopher, I.W., Kletzing, C.A., Kurth, W.S., Santolik, O., Kolmasova, I., Wygant, J.R., and Bonnell, J.W., Quantifying the sheath impedance of the electric double probe instrument on the Van Allen Probes, J. Geophys. Res.: Space Phys., 2022, vol. 127, p. e2022JA030369. https://doi.org/10.1029/2022JA030369

  12. Ho, Y.Y., Jhuang, H.K., Lee, L., and Liu, J., Ionospheric density and velocity anomalies before M ≥ 6.5 M earthquakes observed by DEMETER satellite, J. Asian Earth Sci., 2018, vol. 16, pp. 210–222. https://doi.org/10.1016/j.jseaes.2018.07.022

    Article  ADS  Google Scholar 

  13. Isaev, N.V., Sorokin, V.M., Chmyrev, V.M., Serebryakova, O.N., and Yashchenko, A.K., Disturbance of the electric field in the ionosphere by sea storms and typhoons, Cosmic Res., 2002, vol. 40, no. 6, pp. 547–553.

    Article  ADS  Google Scholar 

  14. Kostin, V.M., Belyaev, G.G., Ovcharenko, O.Ya., and Trushkina, E.P., Features of the relationship of tropical cyclones and earthquakes, Sovrem Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2022, vol. 19, no. 1, pp. 125–139.

    Article  Google Scholar 

  15. Lagoutte, D., Brochot, J.Y., de Carvalho, D., Madrias, L., and Parrot, M., DEMETER Microsatellite Scientific Mission Center Data Product Description, Revision 3.3, Orleans: Laboratoire de physique et chimie de l’environnement, CNRS, 2006. http://demeter.cnrs-orleans.fr/dmt/doc/cms_products_33.zip.https://doi.org/10.1016/j.jseaes.2018.07.022

  16. Liu, J., Zhang, X., Novikov, V., and Shen, X., Variations of ionospheric plasma at different altitudes before the 2005 Sumatra Indonesia Ms 7.2 earthquake, J. Geophys. Res.: Space Phys., 2016, vol. 121, no. 9, pp. 9179–9187. https://doi.org/10.1002/2016ja022758

    Article  ADS  Google Scholar 

  17. Louerguioui, S., Gaci, S., and Zaourar, N., Irregularities of the ionospheric plasma and the ULF electric components obtained from DEMETER satellite experiments above Chile earthquake (27 February 2010), Arab. J. Geosci., 2015, vol. 8, no. 5. https://doi.org/10.1007/s12517-014-1418-7

  18. Makhlouf, S. and Djebli, M., Impact of induced field on the estimation of the ionospheric electric field, Acta Geophys., 2019, vol. 67, pp. 1671–1677. https://doi.org/10.1007/s11600-019-00358-3

    Article  ADS  Google Scholar 

  19. Marchetti, D., De Santis, A., Shen, X., Campuzano, S.A., Perrone, L., Piscini, A., et al., Possible lithosphere–atmosphere–ionosphere coupling effects prior to the 2018 Mw = 7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data, J. Asian Earth Sci., 2020, vol. 188, p. 104097. https://doi.org/10.1016/j.jseaes.2019.104097

    Article  Google Scholar 

  20. Martynski, K., Blecki, J., Wronowski, R., Kulak, A., Mlynarczyk, J., and Iwanski, R., Mesoscale convective systems as a source of electromagnetic signals registered by ground-based system and DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) satellite, Ann. Geophys., 2021, vol. 39, pp. 321–326. https://doi.org/10.5194/angeo-39-321-2021

    Article  ADS  Google Scholar 

  21. Matteo, N.A. and Morton, Y.T., Ionosphere geomagnetic field: Comparison of IGRF model prediction and satellite measurements 1991–2010, Radio Sci., 201, vol. 46, no. 4, pp. 1–10. https://doi.org/10.1029/2010RS004529

  22. Molchanov, O.A., Mazhaeva, O.A., Golyavin, A.N., and Hayakawa, M., Observation by the Intercosmos-24 satellite of ELF-VLF electromagnetic emissions associated with earthquakes, Ann. Geophys., 1993, vol. 11, pp. 431–440.

    ADS  Google Scholar 

  23. Mozer, F.S., DC and low-frequency double probe electric field measurements in space, J. Geophys. Res.: Space Phys., 2016, vol. 121. https://doi.org/10.1002/2016JA022952

  24. Parrot, M., Statistical analysis of automatically detected ion density variations recorded by DEMETER and their relation to seismic activity, Ann. Geophys., 2012, vol. 55, no. 1, pp. 149–155. https://doi.org/10.4401/5270

    Article  Google Scholar 

  25. Parrot, M., Buzzi, A., Santolik, O., Berthelier, J.J., Sauvaud, J.A., and Lebreton, J.P., New observations of electromagnetic harmonic ELF emissions in the ionosphere by the DEMETER satellite during large magnetic storms, J. Geophys. Res., 2006, vol. 111, p. A08301. https://doi.org/10.1029/2005JA011583

    Article  ADS  Google Scholar 

  26. Piša, D., Parrot, M., and Santolik, O., Ionospheric density variations recorded before the 2010 Mw 8.8 earthquake in Chile, J. Geophys. Res., 2011a, vol. 116, p. A08309. https://doi.org/10.1029/2011JA016611

    Article  ADS  Google Scholar 

  27. Piša, D., Santolik, O., and Parrot, M., Pre-processing of the ULF waveform fluctuations above seismic active regions observed by DEMETER, in Proceedings of the 20th Annual Conference of Doctoral Students (WDS 2011), Šafránková J. and Pavlů, J., Eds., Prague: Matfyzpress, 2011b, vol. 2, pp. 73–78.

  28. Piša, D., Němec, F., Santolik, O., Parrot, M., and Rycroft, M., Additional attenuation of natural VLF electromagnetic waves observed by the DEMETER spacecraft resulting from preseismic activity, J. Geophys. Res.: Space Phys., 2013, vol. 118. https://doi.org/10.1002/jgra.50469

  29. Pulinets, S., Ouzounov, D., and Davidenko, D., The Possibility of Earthquake Forecasting: Learning from Nature, Bristol, UK: IOP, 2018. https://doi.org/10.1088/978-0-7503-1248-6ch2

  30. Shen, X., Zhima, Z., Zhao, S., Qian, G., Ye, Q., and Ruzhin, Y., VLF radio wave anomalies associated with the 2010 Ms 7.1 Yushu earthquake, Adv. Space Res., 2017, vol. 59, no. 10, pp. 2636–2644. https://doi.org/10.1016/j.asr.2017.02.040

    Article  ADS  Google Scholar 

  31. Surkov, V.V., Pilipenko, V.A., and Silina, A.S., Can radioactive emanations in a seismically active region affect atmospheric electricity and the ionosphere?, Izv., Phys. Solid Earth, 2022, vol. 58, no. 3, pp. 297–305.

    Article  Google Scholar 

  32. Thomas, J.E., Ekanem, A.M., George, N.J., et al., Electron temperature and ion density perturbations prior to the M6.8 Eastern Honshu, Japan, earthquake of July 23, 2008, J. Earth Syst. Sci., 2021, vol. 130, p. 134. https://doi.org/10.1007/s12040-021-01645-8

    Article  ADS  Google Scholar 

  33. Yan, R., Wang, L., Parrot, M., Zhang, X., & Hu, Z., Comparison of ULF electric field recorded by ground-based stations in China and a low-altitude satellite, Eur. Phys. J. Spec. Top., 2021, vol. 230, pp. 179–195. https://doi.org/10.1140/epjst/e2020-000250-9

    Article  Google Scholar 

  34. Zaourar, N., Mebarki, R., Hamoudi, M., and Parrot, M., La dynamique fractale des perturbations séismo-ionosphériques enregistrées par le microsatellite DEMETER, Télédétection, 2011, vol. 10, nos. 2–3, pp. 77–90.

    Google Scholar 

  35. Zawdie, K., Belehaki, A., Burleigh, M., Chou, M-Y., Dhadly, M.S., Greer, K., Halford, A.J., Hickey, D., Inchin, P., Kaeppler, S.R., Klenzing, J., Narayanan, V.L., Sassi, F., Sivakandan, M., Smith, J.M., et al., Impacts of acoustic and gravity waves on the ionosphere, Front. Astron. Space Sci., 2022, vol. 9, p. 1064152. https://doi.org/10.3389/fspas.2022.1064152

    Article  ADS  Google Scholar 

  36. Zhang, X., Zeren, Z., Parrot, M., Battiston, R., Qian, J., and Shen, X., ULF/ELF ionospheric electric field and plasma perturbations related to Chile earthquakes, Adv. Space Res., 2011, vol. 47, no. 6, pp. 991–1000. https://doi.org/10.1016/j.asr.2010.11.001.2011

    Article  ADS  CAS  Google Scholar 

  37. Zhang, X., Chen, H., Liu, J., Shen, X., Miao, Y., Du, X., and Qian, J., Ground-based and satellite DC-ULF electric field anomalies around Wenchuan M8.0 earthquake, Adv. Space Res., 2012, vol. 50, pp. 85–95. https://doi.org/10.1016/j.asr.2012.03.018

    Article  ADS  Google Scholar 

  38. Zhao, S., Shen, X., Zhima, Z., and Zhou, C., The VLF transmitters' radio wave anomalies related to 2010 Ms 7.1 Yushu earthquake observed by DEMETER satellite and the possible mechanism, Ann. Geophys. Discuss., 2020, pp. 1–22. https://doi.org/10.5194/angeo-2020-7

  39. Zhima, Z., Hu, Y., Piersanti, M., Shen, X., De Santis, A., Yan, R., Yang, Y., Zhao, S., Zhang, Z., Wang, Q., Huang, J., and Guo, F., The Seismic Electromagnetic Emissions During the 2010 Mw 7.8 Northern Sumatra earthquake revealed by DEMETER satellite, Front. Earth Sci., 2020, vol. 8, p. 572393. https://doi.org/10.3389/feart.2020.572393

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study is based on ICE (Instrument Champ Electrique) experience embedded on DEMETER satellite. We are grateful to Jean-Jacques Berthelier the PI of this electrical instrument.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Makhlouf or M. Djebli.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhlouf, S., Djebli, M. Preseismic Ionospheric Electric Field Irregularities Detected by the Double Probes Method. Geomagn. Aeron. 63 (Suppl 1), S71–S82 (2023). https://doi.org/10.1134/S0016793223600236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600236

Navigation