Skip to main content
Log in

A Plasma Pressure Plateau in the Night Sector of the Earth’s Magnetosphere and Its Stability

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

In this paper, we consider the behavior of the radial distribution of the plasma pressure, magnetic field, and plasma parameter in the night sector of the Earth’s magnetosphere at geocentric distances from 7 to 12 RE that are obtained using the THEMIS mission measurements. The results of measurements on the THEMIS-D and THEMIS-A satellites on February 2009 when the satellites were near the equatorial plane were analyzed. Time intervals are identified when the plasma pressure actually did not change with a change in the distance from the Earth. It is shown that profiles with a pressure plateau can exist stably during the day are destroyed during the period of disturbance and are restored after destruction. The role of the pressure plateau in the formation of the structure of magnetospheric current systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Anderson, B.J., Korth, H., Waters, C.L., Green, D.L., and Stauning, P., Statistical Birkeland current distributions from magnetic field observations by the iridium constellation, Ann. Geophys., 2008, vol. 26, pp. 671–687. https://doi.org/10.5194/angeo-26-671-2008

    Article  Google Scholar 

  2. Angelopoulos, V., The THEMIS mission, Space Sci. Rev., 2008, vol. 141, pp. 5–34. https://doi.org/10.1007/s11214-008-9336-1

    Article  Google Scholar 

  3. Antonova, E.E., Large scale magnetospheric turbulence and the topology of magnetospheric currents, Adv. Space Res., 2000, vol. 25, nos. 7–8, pp. 1567–1570. https://doi.org/10.1016/S0273-1177(99)00669-9

    Article  Google Scholar 

  4. Antonova, E.E., Investigations of the hot plasma pressure gradients and the configuration of magnetospheric currents from Interball, Adv. Space Res., 2003, vol. 31, no. 5, pp. 1157–1166. https://doi.org/10.1016/S0273-1177(03)00077-2

    Article  Google Scholar 

  5. Antonova, E.E. and Stepanova, M.V., The impact of turbulence on physics of the geomagnetic tail, Front. Astron. Space Sci., 2021, vol. 8, 622570. https://doi.org/10.3389/fspas.2021.622570

    Article  Google Scholar 

  6. Antonova, E.E. and Tverskoy, B.A., On the nature of electric fields in the Earth’s inner magnetosphere (a review), Geomagn. Aeron. Int., 1998, vol. 1, no. 1, pp. 9–21.

    Google Scholar 

  7. Antonova, E.E., Kirpichev, I.P., Vovchenko, V.V., Stepanova, M.V., Riazantseva, M.O., Pulinets, M.S., Ovchinnikov, I.L., and Znatkova, S.S., Characteristics of plasma ring, surrounding the Earth at geocentric distances ~7–10 R E, and magnetospheric current systems, J. Atmos. Sol.-Terr. Phys., 2013, vol. 99, pp. 85–91. https://doi.org/10.1016/j.jastp.2012.08.013

    Article  Google Scholar 

  8. Antonova, E.E., Vorobjev, V.G., Kirpichev, I.P., and Yagodkina, O.I., Comparison of the plasma pressure distributions over the equatorial plane and at low altitudes under magnetically quiet conditions, Geomagn. Aeron. (Engl. Transl.), 2014a, vol. 54, no. 3, pp. 278–281. https://doi.org/10.1134/S0016793214030025

  9. Antonova, E.E., Kirpichev, I.P., and Stepanova, M.V., Plasma pressure distribution in the surrounding the Earth’s plasma ring and its role in the magnetospheric dynamics, J. Atmos. Sol.-Terr. Phys., 2014b, vol. 115, pp. 32–40. https://doi.org/10.1016/j.jstp.2013.12.005

    Article  Google Scholar 

  10. Antonova, E.E., Vorobjev, V.G., Kirpichev, I.P., Yagodkina, O.I., and Stepanova, M.V., Problems with mapping the auroral oval and magnetospheric substorms, Earth Planets Space, 2015, vol. 67, p. 166. https://doi.org/10.1186/s40623-015-0336-6

    Article  Google Scholar 

  11. Antonova, E.E., Stepanova, M., Kirpichev, I.P., et al., Structure of magnetospheric current systems and mapping of high latitude magnetospheric regions to the ionosphere, J. Atmos. Sol.-Terr. Phys., 2018, vol. 177, pp. 103–114. https://doi.org/10.1016/j.jastp.2017.10.013

    Article  Google Scholar 

  12. Auster, H.U., Glassmeier, K.H., Magnes, W., et al., The Themis fluxgate magnetometer, Space Sci. Rev., 2008, vol. 141, no. 1–4, pp. 235–264. https://doi.org/10.1007/s11214-008-9365-9

    Article  Google Scholar 

  13. Baumjohann, W., Paschmann, G., and Lühr, H., Pressure balance between lobe and plasma sheet, Geophys. Res. Lett., 1990, vol. 17, no. 1, pp. 45–48. https://doi.org/10.1029/GL017i001p00045

    Article  Google Scholar 

  14. Burton, R.K., McPherron, R.L., and Russell, C.T., An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 1975, vol. 80, no. 31, pp. 4204–4214. https://doi.org/10.1029/JA080i031p04204

    Article  Google Scholar 

  15. Iijima, T. and Potemra, T.A., The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad, J. Geophys. Res., 1976, vol. 81, no. 13, pp. 2165–2174. https://doi.org/10.1029/JA081i013p02165

    Article  Google Scholar 

  16. Iijima, T. and Potemra, T.A., Large-scale characteristics of field-aligned currents associated with substorms, J. Geophys. Res., 1978, vol. 83, pp. 599–615. https://doi.org/10.1029/JA083iA02p00599

    Article  Google Scholar 

  17. Kadomtsev, B.B., Kollektivnye yavleniya v plazme (Collective Phenomena in Plasma), Moscow: Nauka, 1988.

  18. Kirpichev, I.P., Distribution of plasma pressure in the geomagnetic tail in the transition region from dipole to quasidipole and stretched magnetic field lines: Events on October 13, 1995 and March 13, 1996, Cosmic Res., 2004, vol. 42, no. 4, pp. 338–348.

    Article  Google Scholar 

  19. Kirpichev, I.P. and Antonova, E.E., Plasma pressure distribution in the equatorial plane of the Earth’s magnetosphere at geocentric distances of 6–10R E according to the international THEMIS mission data, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 4, pp. 450–455.

  20. Kirpichev, I.P. and Antonova, E.E., Plasma pressure profiles in the dark sector of the Earth’s magnetosphere during the magnetic storm of May 29, 2010, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 6, pp. 710–717. https://doi.org/10.1134/S0016793218060075

  21. Kirpichev, I.P., Antonova, E.E., Borodkova, N.L., Budnik, E.Yu., Lutsenko, V.N., Pisarenko, N.F., Morozova, E.I., and Yermolaev, Yu.I., The features of the ion plasma pressure distributions in the near Earth plasma sheet, Planet. Space Sci., 2005, vol. 53, nos. 1–3, pp. 209– 215. https://doi.org/10.1016/j.pss.2004.09.046

    Article  Google Scholar 

  22. Kirpichev, I.P., Yagodkina, O.I., Vorobjev, V.G., and Antonova, E.E., Position of projections of the nightside auroral oval equatorward and poleward edges in the magnetosphere equatorial plane, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 4, pp. 407–414. https://doi.org/10.1134/S001679321604006X

  23. McFadden, J.P., Carlson, C.W., Larson, D., Ludlam, M., Abiad, R., Elliott, B., Turin, P., Marckwordt, M., and Angelopoulos, V., The THEMIS ESA plasma instrument and in-flight calibration, Space Sci. Rev., 2008, vol. 141, nos. 1–4, pp. 277–302. https://doi.org/10.1007/s11214-008-9440-2

    Article  Google Scholar 

  24. Ovchinnikov, I.L. and Antonova, E.E., Turbulent transport of the Earth magnetosphere: Review of the results of observations and modeling, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 6, pp. 655–663. https://doi.org/10.1134/S0016793217060081

  25. Parker, E.N., The alternative paradigm for magnetospheric physics, J. Geophys. Res., 1996, vol. 101, no. A5, pp. 10587–10625. https://doi.org/10.1029/95JA02866

    Article  Google Scholar 

  26. Petrukovich, A.A., Mukai, T., Kokubun, S., et al., Substorm-associated pressure variations in the magnetotail plasma sheet and lobe, J. Geophys. Res., 1999, vol. 104. no. A3, pp. 4501–4513. https://doi.org/10.1029/98JA02418

    Article  Google Scholar 

  27. Petrukovich, A.A., Artemyev, A.V., Nakamura, R., Panov, E.V., and Baumjohann, W., Cluster observations of dBz/dx during growth phase magnetotail stretching intervals, J. Geophys. Res.: Space, 2013, vol. 118, pp. 5720–5730. https://doi.org/10.1002/jgra.50550

    Article  Google Scholar 

  28. Pisarenko, N.F., Kirpichev, I.P., Lutsenko, V.N., Budnik, E.Yu., Morozova, E.I., and Antonova, E.E., The structure of ion spectra in outer regions of the ring current: The November 13, 1995 event, Cosmic Res., 2002, vol. 40, no. 1, pp. 15–24.

    Article  Google Scholar 

  29. Pisarenko, N.F., Budnik, E.Yu., Yermolaev, Yu.I., Kirpichev, I.P., Lutsenko, V.N., Morozova, E.I., and Antonova, E.E., The main features of the ion spectra variations in the transition region from dipole to tailward stretched field lines, Adv. Space Res., 2003, vol. 31, no. 5, pp. 1347–1352. https://doi.org/10.1016/S0273-1177(03)00018-8

    Article  Google Scholar 

  30. Raeder, J., Germaschewski, K., Cramer, W.D., and Lyon, J., Global simulations, in Magnetosphere in the Solar System, Space Physics and Aeronomy Collection, AGU, 2021, vol. 2, pp. 595–606. https://doi.org/10.1002/9781119815624.ch37.

  31. Runov, A., Angelopoulos, V., Henderson, M.G., Gabrielse, C., and Artemyev, A., Magnetotail dipolarizations and ion flux variations during the main phase of magnetic storms, J. Geophys. Res.: Space, V2021, vol. 126, e2020JA028470. https://doi.org/10.1029/2020JA028470

  32. Saito, M.H., Hau, L.-N., Hung, C.-C., Lai, Y.-T., and Chou, Y.-C., Spatial profile of magnetic field in the near-Earth plasma sheet prior to dipolarization by THEMIS: Feature of minimum B, Geophys. Res. Lett., 2010, vol. 37, L08106. https://doi.org/10.1029/2010GL042813

    Article  Google Scholar 

  33. Sergeev, V.A., Gordeev, E.I., Merkin, V.G., and Sitnov, M.I., Does a local B-minimum appear in the tail current sheet during a substorm growth phase?, Geophys. Res. Lett., 2018, vol. 45, no. 6, pp. 2566–2573. https://doi.org/10.1002/2018GL077183

    Article  Google Scholar 

  34. Sibeck, D.G. and Angelopoulos, V., THEMIS science objectives and mission phases, Space Sci. Rev., 2008, vol. 141, nos. 1–4, pp. 35–59. https://doi.org/10.1007/s11214-008-9393-5

    Article  Google Scholar 

  35. Tsyganenko, N.A. and Mukai, T., Tail plasma sheet models derived from Geotail data, J. Geophys. Res., 2003, vol. 108, no. A3, 1136. https://doi.org/10.1029/2002JA009707

    Article  Google Scholar 

  36. Vovchenko, V.V., Antonova, E.E., and Stepanova, M., Magnetic holes observed in the ring current region near the equatorial plane, J. Atmos. Sol.-Terr. Phys., 2018, vol. 177, pp. 141–147. https://doi.org/10.1016/j.jastp.2017.08.024

    Article  Google Scholar 

  37. Vorobjev, V.G., Yagodkina, O.I., Antonova, E.E., and Zverev, V.L., Influence of solar wind plasma parameters on the intensity of isolated magnetospheric substorms, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 3, pp. 295–306. https://doi.org/10.1134/S0016793218030155

  38. Wang, C.-P., Gkioulidou, M., Lyons, L.R., Wolf, R.A., Angelopoulos, V., Nagai, T., Weygand, J.M., and Lui, A.T.Y., Spatial distributions of ions and electrons from the plasma sheet to the inner magnetosphere: Comparisons between THEMIS-Geotail statistical results and the Rice convection model, J. Geophys. Res., 2011, vol. 116, A11216. https://doi.org/10.1029/2011JA016809

    Article  Google Scholar 

  39. Wang, C.-P., Yue, C., Zaharia, S., Xing, X., Lyons, L., Angelopoulos, V., Nagai, T., and Lui, T., Empirical modeling of plasma sheet pressure and three-dimensional force-balanced magnetospheric magnetic field structure: 1. Observation, J. Geophys. Res.: Space, 2013, vol. 118, pp. 6154–6165. https://doi.org/10.1002/jgra.50585

    Article  Google Scholar 

  40. Znatkova, S.S., Antonova, E.E., Zastenker, G.N., and Kirpichev, I.P., Pressure balance on the magnetopause near the subsolar point according to observational data of the THEMIS project satellites, Cosmic Res., 2011, vol. 49, no. 1, pp. 3–20.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank V. Angelopoulos for using THEMIS mission data, especially D. Larson and R.P. Lin for using SST data, C.W. Carlson and J.P. McFadden for using ESA data, K.H. Glassmeier, U. Austerand, W. Baumjohann for the use of FGM data distributed under the direction of the Technical University of Braunschweig. The authors also thank R. Lepping for the opportunity to use WIND and WDC for Geomagnetism satellite data, and Kyoto for providing geomagnetic indices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. P. Kirpichev or E. E. Antonova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirpichev, I.P., Antonova, E.E. A Plasma Pressure Plateau in the Night Sector of the Earth’s Magnetosphere and Its Stability. Geomagn. Aeron. 62 (Suppl 1), S28–S39 (2022). https://doi.org/10.1134/S001679322260059X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679322260059X

Navigation